MATH 4140/5140. HOMEWORK 7 Due Wednesday, March 9

Note: All numbered exercises are from Erdmann–Holm ([EH]).

- (1) Review Chapters 1–3 of [EH] up to (and including) Section 3.2.
- (2) Exercise 3.11.
- (3) Exercise 3.12.
- (4) Let A be a k-algebra and let V be A-module. We say V is indecomposable if $V \neq 0$ and V cannot be written as a direct sum $V = M \oplus N$ of two nonzero submodules (in other words, if $V = M \oplus N$ then M = 0 or N = 0).
 - (a) Show that every simple A-module is indecomposable.
 - (b) Let A = k[x], let $V = k^2$, and let V_{α} be the A-module whose underlying vector space is V and where x acts as the map $\alpha \in \text{End}(V) = M_2(k)$ given by the matrix

$$\alpha = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

Show that V is indecomposable but not simple. Note that this example shows that the converse of the statement in (a) is false.