Note: All numbered exercises are from Erdmann-Holm ([EH]).
(1) Review Chapters $1-3$ of $[\mathrm{EH}]$ up to (and including) Section 3.2.
(2) Exercise 3.11.
(3) Exercise 3.12.
(4) Let A be a k-algebra and let V be A-module. We say V is $i n d e-$ composable if $V \neq 0$ and V cannot be written as a direct sum $V=$ $M \oplus N$ of two nonzero submodules (in other words, if $V=M \oplus N$ then $M=0$ or $N=0$).
(a) Show that every simple A-module is indecomposable.
(b) Let $A=k[x]$, let $V=k^{2}$, and let V_{α} be the A-module whose underlying vector space is V and where x acts as the map $\alpha \in \operatorname{End}(V)=M_{2}(k)$ given by the matrix

$$
\alpha=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

Show that V is indecomposable but not simple. Note that this example shows that the converse of the statement in (a) is false.

