more on ideals : principal ideals

3. Examples of algebra transphirm.
(1)
$$Q = \begin{pmatrix} 0 \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ y$$

(2).
$$kG \text{ for } Q = \underbrace{d}_{2}$$

 $kG \text{ for } Q = \underbrace{d}_{2}$
 $kG \text{ for } G \text{$

(3)
$$G_{-} < g : g^{k} = e^{-7}$$

basis: $G = \{e, g, g^{2}, \dots, g^{k-1}\}$
mult: $g^{i} \cdot g^{j} = g^{i+j} = g^{i-j}$
the remaider
for iej when
dondled by k.
Example: $kG \cong \frac{k(k)}{(t^{k}-17)}$ more on ideals in kits soon.
Pf strategy: Consider the evaluation harm (ttw) total $t=g$: $k(t) \mapsto kG$ with tring.
show the how is swj and has beened $t^{k}-1$, then apply

(4)
$$|R[x]/(x^{2}+1) = C$$

(Subsider the evaluation how $Eval_{i:} |R[x] \rightarrow C \quad v/(x \mapsto i)$.
(eq. $a + b \times \mapsto a + bi, x^{2} \mapsto i^{2} = -1$).
Eval: is surj. Ex feer $(Eval_{:}) = \langle x^{2} + 1 \rangle$.
U is then.
(an elegant contends of the coupler field !

(a) /e[x]. Recall that kix has a division / Enclodean a gonthin: long division, $\forall f, g \in kix$], $\exists l q_{g}, r \in kix$] s.t. deg(r) < deg(g) and f=q.g+r A consequence of the algorithm is that every ISKTED is a principal ideal, namely, I = where p can be taken as any poly in I of minimal deg. . move on ideals $) \longrightarrow$ · If A = kQ, what's A ei for each i = Go? quiter . Ch2: modules