Last time : Bases untrol vector spaces.

Today: examples of algebras
. algebra homs,
$$\operatorname{End}_{k}(V) \cong M_{n}(k)$$
 if $\dim_{k} V = n^{\prime}$

(3)
$$Mu(k)/k$$
. (- note: the algebra of commutative only when $u = 1$.
{ nxn matrices w/ entries from k }.
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to a vector space. (in particular, one can scale matrices)
 $Mu(k)$ to $Mu(k)$ to $Mu(k)$?
 $Mu(k)$?
 $Mu(k)$?

 $G'(Lex) : \left\{ s \quad B = GL_n(k) \cup \left\{ o \right\}^2 \ a \ subdycha \ of \ Mn(k) ?$ $No, \quad B \ is not \ closed \ under \ lin, \ comb.$ $\left[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \left[\begin{matrix} 0 & -1 \\ -2 & -3 \end{pmatrix} \right] = \left[\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix} \right].$ $\widehat{B} \qquad \widehat{B} \qquad \widehat{B} \qquad \widehat{B}$

E) polynomial algebras

$$k[t_0]$$
, the universite polynomial space over k , is a k -algebra.
variable
. have addition, scaling and mult? Yes.
. the arisons? Ex: They do hold. (1 is the constant poly $f=1$.)
Note: The subspace $B = Span_k \{t^i: i \ge 1\} = \{all polynomials until no
constant term $j = .
To an ideal (left, right, two sided \rightarrow doesn't matter since bIt]
To commutative).
. The subspace $B' = Span_k \{t^2: i \ge 0\} = \{all even polynomials in kIt\}$
To not an ideal but is a subalgebra.
(($3-2t^2$). (t^4-3t^2+5) = lin, comb. of x^{2i} , izo)$$