01.19.2022.

Last time: review for vector spaces, linear maps, bases, dimensions, ...

Today: . more on basis

1. Bases

(3) Matrix of a linear map: (For simplicity) suppose V and V'
Let
$$f: V \rightarrow V'$$
 be a linear map. (For simplicity) suppose V and V'
are finite dimensional, so that B is finite and V' has a finite basil B'.
Say $B = \{w_1, v_2, \dots, w_n\}$ and $B' = \{w'_1, w'_2, \dots, w'_m\}$.
Then the matrix of f with respect to B and B' is the maxn
matrix $[f]_B^{B'} := [\cdots, [fw_i]_{B'_i}, \dots]$.
Where the ith col is column $[f(w_i)]_{B'}$, the coordinate
vertice of f(w_i) relative to B' (ie., the vertice $[d_n]$ st. $f(w_i) = \sum_{i=1}^{m} d_i w'_i$)
Recau that $[f]_B^{B'}$ has the property that
 $[f(w)]_{B'} = [f]_B^{B'} \cdot [u]_B$ $\forall u \in V$.

· Ex: Show that a subalgeba of A is just a subject of A containing lA that is an algebra itself under the addition, scaling, and mult. operation inherited from A.