AA2. Lecture 37. HU: deadline extended to this Friday . Next has will be due next Friday Last time: finished the pot of the AW. thm.

04.20.2022.

Today: . Some applications of the A.W. thm.

. Maschke's Thm: Statement and first examples

1. Remarks on Applications of the A.W. Thm

Remark: (Commutativity) By the A.W. Thrn, if k is also closed
$$(k = \overline{k})$$
,
then A is a s.s. k-algebra. \Longrightarrow A \cong Ma, $(k) \times M_{n_2}(k) \times \cdots \times M_{n_r}(k)$
for some $\Gamma \in \mathbb{Z}_{\geq 1}$, $n_1, \cdots, n_r \in \mathbb{Z}_{\geq 1}$.
If this is the case, we note that A is commutative iff $n = 1$.
If this is the case, we note that A is commutative of k .
Note generally, over an arbitrary field k , A is comm. and so iff
A is a direct product of division algebras over $k \left(\prod_{i=1}^r D_i = \prod_{i=1}^r M_1(D_i) \right)$.
Which has to be a direct product of has to be a field containing k fields containing k .

What about our three main types it examples? (What do the A.W. decomps look like?) (1) Path algebras Recall that for an acyclic quives Q = (20,Q1), we proved using the theory of Jawleson radizals that J(kQ) = Spank Sall pasitive length paths on Q]=ka and have lea is sis if Q1= \$, ie, if Q has no arrow. When this is the case, kQ = TT k, which is commutative. the A.W. demp of a s.s. path algebra.

(2) folynomial rings
Recall: . letx) => not s.s.
• For f c leta) w./ irr. decomp
$$f = f_1^{\alpha_1} \int_{2}^{\alpha_2} \dots \int_{r}^{\alpha_{r-1}} dr = \frac{bix}{2} / 2f_7$$

i) s.i iff $\alpha_{i} = 1$ di. (n do cose ...
ci) if $le = c = le$, then all the irreducible pulys. f_1, \dots, f_r that to be of
degree 1 and of the form $(x - c_i)$ for some scalars c_{i}, \dots, c_r . s.
 $letx / cf_7 = \frac{letx}{i} / \frac{r}{i} (x - c_i) 7$ Chinese Remainder than r letx/
 $i = 1$
 $r = letx / \frac{r}{i} letx - remark = scene conclusion $r = \frac{letx}{i} / \frac{r}{i} letx - remark}$$

(2). If
$$k = IR \neq K$$
, then $(fact;) every irr. poly.$ over $IR = k$ has degree 2
on 2, $(eq. \chi-1, \chi^2 t|)$, so we may assume (by readering terms if
necessary) that $f = (f_1 \cdot f_2 \cdot \dots \cdot f_m) \cdot (f_{m+1} \cdot \dots \cdot f_r)$. It follows
that $deq. 1 \text{ trr.} \quad deq^{-2} \text{ irr.}$
 $k [x]/cf_7 = k [x]/cf_{17} \times \dots \times k [x]/cf_{m} \times \dots \times k [x]/cf_{m}$
 $= IR \times \dots \times IR \times G \times \dots \times G.$
 $M \cdot Oleomp for S.S. quotients IRES/cf_{7} et RES.$
For firste groups, we have Maschke's Thm ...

2. Maschke's Thm (statement and examples)

Eq:
$$k = C$$
, $k = S_2$
By Abstract Algebra 1. # (onj, classes f $S_3 = # cycle types for $S_7 = 3$
(a) (b) (c), (ab)(c),
(abc)
So GS_2 has 3 simple modules (up to ito), (abc)
So the A.W. decomp of GS_2 should be $GS_3 = M_{n,1}(C) \times M_{n,2}(C) \times M_{n,3}(C)$.
By div. consideration, we should have $N_1^2 + n_2^2 + n_3^2 = [S_3] = b$
 $N_1 = N_2 = [N_3 = 2]$ if we assume $N_1 \leq n_2 \leq n_3$
Thus, GS_3 must have two simple modules of dim. 1 and Dhe simple of dim 2.
What are they?$

Simple 1. (the invite module
$$k = c$$
 on which $g \in G$ acts $c \in I$ $\forall g \in G$.) \cong Spens $\forall_1 + \forall_2 + \forall_3$ $\in k^3$
 $dm = 2$ simple: $[a \lor i + b \lor v + c \lor s \in k^3] | a \lor t = c = 0] = Spen [\lor i \lor v , \lor v \lor s] \in k^3$ (from $t \lor \cdot)$
The third simple / second $dm = 1$ simple: $V = -k = c$. with the action
 $g \cdot 1 = sign(g)$, $g \mapsto sign(rep)$.
Corresponding to the rep $G \subseteq G \to Evd_G(V) = C$,
 $g \mapsto sign(g)$

Q: (an you find the A.W. dewap for G.S.G ?

Next time: proof of Maschke's Thm.