AA2. Lecture 34.

04. 13. 2022.

. proof of the E direction.

· Dutline of the
$$\Rightarrow$$
 direction.
 $A : s.s.$
 $A = \bigoplus_{i=1}^{n_i} \sum_{j=1}^{(i)} \sum_{j=1}$

Today: proof of (), start () and (3)

1.
$$A \cong \operatorname{End}_{A}(A)^{P}$$

Prop: For any k-closebra A , we have an isomorphism of algebra
 $Y: A \to (\operatorname{End}_{A}(A))^{OP}$, $A \mapsto (\operatorname{the endo.} \Gamma_{a}: A \to A \text{ given by}$
equals $\operatorname{End}_{A}(A) = \{A \operatorname{-red} \operatorname{homs} f: A \to A\}, \Gamma_{a}(X) = X a \forall X \notin A\}$
streightforwoord, equals $\operatorname{End}_{A}(A) = \{A \operatorname{-red} \operatorname{homs} f: A \to A\}, \Gamma_{a}(X) = X a \forall X \notin A\}$
but instructive. to with mult $r \cdot S := S \circ Y$
 U you should be cube to with mult $r \cdot S := S \circ Y$
 U you should be cube to in the following.
(1) $\forall A \in A, \text{ the cssigned map } Y(a) = r a (\operatorname{right} \operatorname{mult}, \operatorname{by} a)$ if indeed M
 $\operatorname{-the}$ is domain set $(\operatorname{End}_{A}(A))^{OP} = \operatorname{End}_{A}(A), i.e., \text{ that } r_{a}$ is indeed an
 $A \operatorname{-module}$ form. This is time since $[a] Y_{a}$ is linear since mult $M A$ is tolerare.
 $r_{a}(cx + dy) = (cx + dy) a = c(xx) + d(y_{a}) = cr_{a}(x) + d(r_{a}(y)) \forall c, d \in K, x, y \in A$

and ub) Ta TS an A-mod then by alsocirchivity of mult in A:

$$Y_{a}(b \cdot x) = (b \cdot x)_{a} = b \cdot Y_{a}(x) \quad \forall b \in A_{-} \times A$$
(2) The map ψ is a linear map. if, that $\psi(\lambda a + \lambda b) = \lambda \psi(a) + \lambda \psi(b)$.
This is an equility of two maps from $A + A_{-} = \lambda \psi(a) + \lambda \psi(b)$.
This is an equility of two maps from $A + A_{-} = \lambda (\lambda a + \lambda b)$
 $A + A_{-} = \lambda (\lambda a + \lambda b)$
 $= \lambda (\lambda a + \lambda b)$
 $= \lambda (X a + \lambda b)$
 $= \lambda (X a + \lambda b)$
 $= \lambda (X a + \lambda b)$
 $= \lambda (Y a(\lambda)) + \lambda (Y b)(\lambda)$
 $= [\lambda \psi(a) + \lambda \psi(b)](x)$
 $= [\lambda \psi(a) + \lambda \psi(b)](x) \quad \forall x \in A$.

(3)
$$\Psi$$
 respects multiplication, i.e., $\Psi(ab) = \Psi(a)\Psi(b)$ $\Psi(a, b\in A$.
To do so, note that $[\Psi(a)\Psi(b)](x) = [\Psi(b)\circ\Psi(a)](x)$
 $\overline{bu}_{A}(A)^{OP} = \Psi(b)(\Psi(a)(x))$
 $= \Psi(b)(\chi a)$
 $= (\chi a)b$
 $= \chi(ab)$
 $= \Psi(ab)(x)$ $\Psi \times \epsilon A$
(4) Ψ preserves unit: $(\Psi(1_{A}))[\lambda) = \chi \cdot | = \chi = id_{A}(x)$, so $\Psi(1_{A}) = id_{A} = 1$ $\overline{bd}_{A}(h)^{OP}$
By (1), (2), (3) and (4), we conclude that Ψ is an alg. from .

(5).
$$\forall$$
 is inj : Suppose \forall (c) = ψ (b) for some a.b $\in A$. Then
 $(\psi(a))(x) = (\psi(b))(x) \quad \forall x \in A$. i.e., $x a = xb \quad \forall x \in A$.
(μ particular, if we set x to be 2_A we get $1_A a = 1_A b$,
So $a = b$. It follows that ψ is n_j .

(6)
$$\forall is suj : We want to show that every element f in the lodonah $End_{A}(A)^{ep}$
equals $\forall la = ra = (nzbit mult by a)$ for some $a \in A$. So let
 $(f: A \rightarrow A) \in End_{A}(A)^{ep}$. (anjitler $G := f(1_{A})$. We hope that $f(x) = xa \forall x \in A$.
the behavior of f is entirely determined by its
this is true because f is an A -mode hom $(\psi(a))(x)$ behavior on 1_{A} .
 $f(x) = f(x \cdot 1_{A}) = x_{1} \cdot f(1_{A}) = x \cdot G = xa$. (where the action \overline{r}_{1}
on the regular module A)
 $3y(i)-i(6)$, \forall is a bij. alg. how, so it's an alg. \overline{r}_{1} .$$

2. From End_A(A) ^{op} to matrices Prop: Let A be an k-algebra. Lot U, Uz, --. Un be A-modules. The set $\Lambda := \left\{ \begin{bmatrix} \varphi_{ij} \\ \varphi_{ij} \end{bmatrix}, \begin{array}{c} \varphi_{ij} \in Hom(U_j, u_i) \\ \varphi_{ij} \end{bmatrix} \right\}$ is a k-algobra under the usual nat. addition and multi formula, where

