AAZ. Lecture 33.

04.11. 2022.

Last time: . HW discussion

S.s. of path algebras:
If a is an acyclic quiver, then ka is s.s iff
$$G_1 = \phi$$
, or
in which case $ka = Tik$.
 ico_0

Also recard:
if
$$|e\bar{b}x| \ni f = f_1^{\alpha_1} f_2^{\alpha_2} \dots f_r^{\alpha_r} (irr.deamp)$$
, then
 $|e\bar{b}x|^3/2f_7$ is sis $(e^{\alpha_1} - e^{\alpha_1} f_1^{\alpha_2} \dots f_r^{\alpha_r})|_{r=1} \forall i$.

Today :

The Artin-Wedderburn Thm . The statement

. The proof outline

nat about ur other an example kG D s.s. (=) char (k) fKal. the AW. Thun will give an alt. form for keg if RG 73 1.5.

1. Statement of the Artin-Wedderburn (AW.) Than

Thus: Let k be a field and A a k-clyabra
i) (general cose) The clyabra A is ss. iff it is isomorphic to
an clyabre of the form

$$Mn_1(D_1) \times Mn_2(D_2) \times \cdots \times Mn_r(D_r)$$
 (*)
where $n_1, n_2, \cdots, n_r \in \mathbb{Z}_{21}$ and $D_1, D_2, \cdots \in Mn_r(D_r)$ (*)
where $n_1, n_2, \cdots, n_r \in \mathbb{Z}_{21}$ and $D_1, D_2, \cdots \in D_r$ are dation algebrai over k.
Moreover, if A is sis then the above decomp is unique up to reordering of
the (direct) factors, with V being the number of iso class of simple Armodules
 N_1 : arising from the dim. of the ith simple Si, and D_1 .

(2) (Speuril case) if k is algebraically closed, then A is s.
If A is isomorphic to an algebra of the form

$$M_{n_1}(k) \times M_{n_2}(k) \times \cdots \times M_{n_r}(k)$$

where $h_{1,1}, h_{2,1}, \cdots, n_r \in \mathbb{Z}$. The "moreover" part of (1) still holds.

2. Proof outline of the AW then.
We prove the general cose.
(a) The if direction: "
$$M_{n_1}(D_1) \times \cdots \times M_{n_V}(D_V)$$
 is s.s.".
(easier)
of: Since direct product of s.s. algebras are s.s. it subjects to show
that coch comp $M_{n_1}(D_1)$ is s.s.
We can prove $M_n(D)$ is s.s for any $n \in \mathbb{Z}_{\geq 1}$ and $dor=sin alg. D/k$
in the same way as we proved $M_n(k)$ is s.s.
We show $M_n(D) \cong \bigoplus_{i=1}^{\infty} C_i$ where $C_i = \{ [o]_0 [\dots]_{i=1}^{\infty} [o]_i [\dots]_{i=1}^{\infty}$

. each Ci is simple: whe the strong cyclicity text.
Take
$$0 \neq V \in C_i$$
 Say $V = \begin{bmatrix} 0 & \begin{vmatrix} a_1 \\ a_2 \end{vmatrix} & 0 \end{bmatrix}$ with $a_j \neq 0$ for some j .
Then $E_{ij} \cdot V = \begin{bmatrix} 0 & |a_j e_1|^0 \end{bmatrix}$
and hence $(a_j^{-1} \notin i_j) \cdot V = \begin{bmatrix} 0 & |a_j e_1|^0 \end{bmatrix}$, where a_j^{-1} earses since a_j is
a nonzero elit in the division algebra.
But then $E_{i1} \left(\begin{bmatrix} 0 & |e_i|^0 \end{bmatrix} \right) = \begin{bmatrix} 0 & |e_i|^0 \end{bmatrix} \neq i \leq i \leq n$.
It follows that V generates the entire G_i in the jence that
 $M_n(D)$. $V = C_i$, so C_i is single.
We are done with the 'f' part of the A.W. This.

(b) The 'only of part : given a s.s. algebre over
$$k$$
, thy is it
is to an algebre of the form $M_{n_1}(D,) \times \cdots \times M_{N_T}(D_T)$?
Sketch of the proof outline; Suppose A is s.s. Then the regular module A
decomposed into simples. say as
 $A = \left(S_1^{(1)} \in S_2^{(1)} \otimes \cdots \otimes S_{n_1}^{(1)}\right) \oplus \left(S_1^{(n)} \otimes S_2^{(2)} \otimes \cdots \otimes S_{n_2}^{(2)}\right) \oplus \cdots \oplus \left(S_1^{(r)} \otimes S_2^{(m)} \otimes \cdots \otimes S_{n_T}^{(n)}\right)$.
Note the multiplication $N_{1, \cdots}$. My are unquely determined because N_j
is just the multiplicity of the curp. factor $(S_1^{(1)} in a coup. series of A + j$.

$$A = \left(S_{1}^{(1)} \oplus S_{2}^{(1)} \oplus \cdots \oplus S_{n_{1}}^{(i)}\right) \oplus \left(S_{1}^{(n)} \oplus S_{2}^{(n)} \oplus \cdots \oplus S_{n_{2}}^{(n)}\right) \oplus \cdots \oplus \left(S_{1}^{(r)} \oplus S_{2}^{(r)} \oplus \cdots \oplus S_{n_{r}}^{(r)}\right)$$

Whith the above decomposition, we will show

$$Pf soon$$

 $A \cong (End_{(A)})^{op}$ of an algebra. Same algebra except "new $ab = old_{(Ba')}$.
 $A \cong (End_{(A)})^{op}$ \rightarrow general fact about algebras
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow general fact about algebras
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow rewriting
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow rewriting
have $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow rewriting
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow rewriting
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow schur's lemma (non two singles have no homes
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow schur's lemma (non two singles have no homes
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow schur's lemma (non two singles have no homes
 $find_{(A)} = (Find_{(A)})^{op}$ \rightarrow schur's lemma (find_{(A)})^{op} \rightarrow schur's lemma (find_{(A)})^{op} $find_{(A)}$ $find_{($

Next time(s): proofs of the ingredients/isos.