last time: . Isomorphism therems for gps

· def of rings and fields

Commutative ring where every nonzero ett

E.x. Are the following rings fields?

To invertible

 (Z_1,t,\cdot) , (Q_2,t,\cdot) , (R_1,t,\cdot) $\times (e_3\cdot z has) \qquad ((M_1 \mapsto \frac{n}{m}) \qquad (N_1 \mapsto \frac{1}{n}, invene \forall x \neq 0.)$

(Mn(IR), t, ·), n>1. X not commutative; also, not all nonzero matrices are invertible, e.g. [']

Today: Vertor spaces & linear algebra

· Def. of algebras over fields.

Let k be a field for the rest of today.

1. Vector spaces

Def: A vertor space (V.s.) over k is a triple (V, +. .)

. (V, t) is an abelian sp - expands to five unditains. eg. V+w=w+V Vu.w. J. . . is a map ·: k × V -> V, carbed scaling with the following properties:

(b) C. (u+V) = C.u+C.V

He action behaves well. (c) (c+d). u = c.u+d.u

(d) $(c.d) \cdot u = c.(d.u)$

We assume familianty with besit linear algebras: Vectors. matrices, determinants, linear maps, bases, etc. We should also be confirtable with abstract vector spaces (outside 127, e.g. some spaces of function or maps). eg. n=3. $2 \cdot \begin{bmatrix} \frac{1}{2} \\ -3 \end{bmatrix} = \begin{bmatrix} \frac{2}{4} \\ -6 \end{bmatrix}$ $3 \cdot E.X$: there she v.i. axioms. E.g. (1) (IRM, +) forms a v.s. over IR.

(2)
$$(k^n, +)$$
 is a v.s. over k .

Note: $(C, +)$ is a v.s. over k .

As a $(C-1)$ -s. C has a basis $\{i\}$ and $dim 1$.

(3) $(C = \{a+bi \mid a,b \in IR\}, +)$ is a v.s. over IR .

As an IR -vector space, C has a basis IR -vector space, IR -vector IR -v

Mr(k), the set of all nxn matrices with entries from k, forms a v.s. over k. eg. M2(IR). typical etts. [12]. [0-1]. $t: \begin{bmatrix} 1^2 \\ 34 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 5 & 7 \end{bmatrix}$ Scaler mut: $7.\begin{bmatrix} 12\\34 \end{bmatrix} = \begin{bmatrix} 7.14\\21.28 \end{bmatrix}$ By properties of matrix operations (just scaling and addition), we know that Mn (R) I a rechr space,

Note: So far we howen't considered mult of matrices in the discussion at all. The mult and its nice properties will make Mn(k) more than a v.s. it will make Mn(k) an algebra over k' (to be defined).

2. Basic notions of linear algebra

Def. . A linear map between two k-v.s. V and W is $\varphi: V \rightarrow W$ s.t. $\begin{cases} \omega \end{cases} f(u+v) = f(v) + f(v) \quad \forall u, v \in V \end{cases}$ $\begin{cases} \psi \end{cases} f(c, u) = c.f(u) \quad \forall c \in \mathbb{R}, u \in V. \end{cases}$

Note: Recove that (c), (b) imply that f(ov) = ow: f(0) = f(0) + f(0) = f(0) + f(0)

Adding the additive inverse of flar) to both wides yields ow = flar). A basis of a v.s. V is a subset $B \subseteq V$ se $\int_{i=1}^{n} C_{i} V_{i} = 0, V_{1}, \dots, V_{n} \in B, C_{i}, \dots, C_{k} \in \mathbb{R} \Rightarrow C_{i=0} \forall i$ $|B| \text{ is linearly independent} : \left(\sum_{i=1}^{n} C_{i} V_{i} = 0, V_{1}, \dots, V_{n} \in B, C_{i}, \dots, C_{k} \in \mathbb{R} \Rightarrow C_{i=0} \forall i$ |B| spans V, i.e., every ett of V is a linearly of B.

Fact: Every v.s. has at least one basis, and an based of it have the same size. Dof: That size is called the dimension of V. dimk(V). [[z], [a]] are both bases of [[z], [a]] are both bases of [[z], [a]]and $dm_{IR}(IR^2) = 2$ Eg. Earlier we saw that $d_{R}(C) = 2$ and $dim_{\alpha}(\alpha) = 1$. · A v.s. V over k 12 finite dimensional if it has a finite spanning set.

implies that V has a fixite basis. Not time: more on bases · def. of k-algebras.