Prop: Let A., A., ..., Ar be finitely many leadgebras let
$$A = A, \times A_{22}, \dots, A_{r}$$
.
Then A is a sc algebra iff Ai is a s.s. algebra for all 15 is r.
Pf of the only of implication: (A is s.s \Rightarrow A: is ss Vi)
Suppose A is s.s. For each i, we can consider the projection from
 $\pi_i: A = A_{12}, \dots, A_{r} \rightarrow A_i$
(a_i, a_2, \dots, a_N) $\rightarrow a_i$.
We have $A_i = |m(\pi_i)|$, and from images of s.s. algebras are s.s.
So A_i is s.s.

$$\begin{array}{rcl} \label{eq:proposed} \end{tabular} & \$$

ef (if): Suppose A; is sis for all 15 is r. We will show that A is
a s.s. algebra by Sharing that every A-module M is s.s. Note that
(1) We have a decomposition of A-modules
$$M = \bigoplus_{i=1}^{\infty} S:M$$
 where
 $S_i = (0, 0, \dots, 1_{A_i}, 0, \dots, 0)$. (Lemme 3.20)
it is spot
Consequently, to show M is a s.s. it suffices to show that $M_i := S:M$
is a s.s. A-module $\forall i$.
(2) In the above notation, each M; is an A_j -module $\forall j$, with action
 $A_j \times M_i = A_j \times (E:M) \longrightarrow M_i$, $a_j \cdot (E:M) \longrightarrow (a_j S_j S_i) \dots M_i$
the action corresponds to the rep $A_j \longrightarrow A_{j+1} \dots A$

We need to show that each Mi is a ss. Armodule.

Since
$$Ai \ i \ 0 \ s.s. \ clydbra, Mi \ D \ a \ s.s. \ Ai - module. therefore
$$Mi \ is \ a \ s.s. \ A \ module \ by \ thm \ 4.1], \qquad = (Ai = [m(\pi_i) = A/ker(\pi_i)))$$

For $(Ai = [m(\pi_i) = A/ker(\pi_i)))$

For $Mn(k)$ is a s.r. $clydbra$ for each n , and some for $Mn(0)$ for
 $cry \ dvision \ algebra \ D \ over \ k, \ it follows \ shart \ every \ cly. \ 4 \ she \ form
 A $Mn_i(D_i) \times Mn_2(D_2) \times \cdots \times Mn_k(D_k)$
Ts ss. In $(A.5, \ We'U$ see that $any \ s.s. \ algebra \ over \ k$
has to be of the form $(r) \rightarrow \ the \ Artin-Wedderburn \ Thm$.$$$