AAZ. Lecture 26

03.18.2022.

Lost time: . Schur's Lemma and its applications

b) From Lex: Recall from HW] that the fet -module
$$k(x) = \int_{0}^{x - z} \int_{0}^{z} \sqrt{z} = \int$$

(121)

$$A = \frac{k(x)}{2x^{t}7}$$
. Consider the regular module $A PA$.
Recall other the only simple submodule of $A PA = \frac{1}{3} \sqrt{\frac{k(x)}{2x7}}$, where $X = \frac{1}{3}$ the only irr. factor of x^{t} . On V , the effect $\frac{1}{x+(x^{t}7)}$ acts as the scalar o :
 $\left(\frac{x+(x^{t}7)}{(x+(x^{t}7))} - \frac{f+(x)}{(x+(x^{t}7))} = \frac{1}{x}f + \frac{1}{x} = 0\right)$
By preservation of scalag actives, $\frac{x+(x^{t}7)}{x+(x^{t}7)}$ must be a on all simple submodules of V . It follows that $\frac{x+(x^{t}7)}{x+(x^{t}7)}$ and $\frac{1}{3}$ on all simples of A . It follows that the regular module $A = \frac{1}{3}$ direct sum of simples s. If $f = 1$.

Corollary 2. (Homonorphic images of us nodules are s.s.)
Let
$$q: V \rightarrow W$$
 be an A-mod hom. If V is s.s. then $\lim_{t \to \infty} q$ is s.s.
In particular, if q is surj, then W is s.s.
Pf: We use the sum char. of s.s. and the ficture fact:
I'' if $q: S \rightarrow W$ is an A-mod han and s is a simple A-module, then
either $q=0$ or $\lim_{t \to \infty} q$ is simple and iso to S."
 $pf:$ Suppose $q \neq 0$. Then keep $q \neq S$, so keep $q = 0$, so $[\lim_{t \to \infty} q] = \frac{s}{6} = S$.
Suppose V is s.s. Then $V = \sum_{i \in I} S_i$ for simples S_i (if I), so
 $[\inf_{t \in I} q] = Q(V) = q(\sum_{i \in I} S_i) = \sum_{i \in I} Q(S_i)$. Since each $Q(S_i)$ is simple or zeros
simple or zero, and we can discord the zeros
it follows that $[\inf_{t \in I} q]$ is a sum of simples, so $[\inf_{t \in I} q]$ is s.

Next the: more crollanies on properties of s.s. modules. Upshot : Itimomorphic images, Isomorphic copies, submodules, quotient nodules, direct sums, and direct summends of

S.s. modules are s.s.