AA2- Lechare 21.

03.04.2022.

· Construction of simple modules of leQ for an acyolic guiver Q.
· proved:
$$\forall i \in G_0$$
, $S_i = \frac{Aei}{Aei} = Spen(e_i + J_i = J_i = Simple)$
module of kQ , and $\overline{J_i} = S_i \neq S_j$ if $i \neq j$.
· to prove : Thus every simple of kQ is jo. to some S_i , $i \in G_0$
> prep: ca) $\forall i \in Q_0$, $e_i Ae_i = Spen(e_i)$ and $d_m(e_i Ae_i) = 1$
b) J_i is the only max. submodule of Ae_i , and $e_i J_i = 0$.
To day : finishing the proof of Thus . Composition series and length of modules

L. Pf of Thm 1. (
$$\theta$$
: acyult quive, $A = k \theta$)
Pf: let S be a simple module of $k \theta$. We want to show that $S \cong S$;
for some $i \in G_0$. To do so, take a nonzero eff $s \in S$.
Then $\theta \neq S = 1_{k0} \cdot S = (\sum e_i) \cdot S = \sum_{i \in O_0} (e_i \cdot S)$,
so for some i we must have $e_i \cdot S \neq 0$. Pith such on i .
Then by Lemmo 3.3, we have $S = A(e_i \cdot S) = (Ae_i) \cdot S$ since S is simple.
Now consider the map $\theta:Ae_i \rightarrow Ae_i \cdot S = S$, $Ae_i \cdot J = G$.
It can be easily checked that θ is an A -module horn, so by the list
iso Then we have $Ae_i / ker q \cong in \phi = Ae_i \cdot S = S$.
Since S is simple, $Ae_i / ker q \cong simple$, so fear q is a nox: submodule of Ae_i .
By (b), we must have $ker q = T_i$ and here $S \cong Ae_i / T_i = S_i$, so we are dome.