AA2. Lecture 15.

2. Modules of quotients of feix]. We first note some generalities about modules of a quotient of an alg. A VS. modules of A theef. Phypllet A be an alg. and I a two-sided release of A. (a) Any module V of A/I is cutomatically an A-module by the action a. J = (a+I). J 4a E A. VEV (b) Let when an A-module. Then we known can make W an A/I module via che formula (a+I). W = a. W VaGA, we W Iff I. W=0. (i.e., "every elf of I fords all of w") Upshot: Modules of A/I are the same as those modules of A annihilated by I,

$$Pf: (1) \quad Again, we can check the module axis for $a: V = (a+Z) \cdot V$.

$$Or, \quad Ve \text{ count note that } simply \quad arises from the representation
$$A \xrightarrow{\pi_Z} A_{|I} \bigvee_{is \text{ on } A_{|I}} \inf_{\text{Ind}_{k}(V)} .$$

$$a \xrightarrow{} a+I \xrightarrow{} a+I \xrightarrow{} (a+I) \cdot -$$$$$$

(2) (sketch) The key is well-defined new of the proposed actions
$$(a+T) \cdot w \stackrel{\text{def}}{=} a \cdot w$$

If (Once & i) well-defined, it's straightfirward to check that it satisfies the module cxions. Making W an A/I-module.

Back to the case
$$A = \frac{1}{2} \frac{1}{2} \frac{1}{2}$$
. Let I be an ideal of $\frac{1}{2} \frac{1}{2}$.
Then I must be a principal release $I = \langle 57 \text{ for some } ffktal.$
So modules of $\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$

Eq. Say
$$k = iR$$
, $A = heta$) and $V = k$. Take $f = x^2 - 3xrz = (x-1)(x-2)$
Then linear map on $V = k$ must be scaling $d: k \to k$, $J \mapsto c.N$
for a constant cek by linear algebra.
It follows that making V on A -module is just to specify what scalar ∞ shald
as on $V = k$. eq. For $c=3$, V has an A -module structure ste
 $\chi \cdot \lambda = 3\lambda$. J $(x^2 - 3x+2) \cdot \lambda = (f - 9ry)\Lambda$
($Ex= 1f \ c, c' \ are \ distinct \ constants$, then $Vd = V_{x=3} = iV_3 = 2\Lambda$.
 $x^{-c} Vc \notin Vc P^{x=c'}$ as module. — see email on $HW4$.)
By Thm 2, Vc is automatically a $kex \chi c_{F}$, -module rff on $Vc \ f$ acts $c_{S} = 0$,
 $rff \ f(c) = c^2 - 3c + 2 = 0$, $rff \ c = 2 \text{ ar } c = 2$.

Condusion: There are precisely two 1-dimensioned
$$\frac{|kire|}{\langle S7 \rangle} = 0$$
 modules up to
isomorphism. They are V_{c} for the roots $c=1$ and $c=2$ of f .
 $E_{f} \cdot k = 1R$. How many 1-dimensional modules of $\frac{|kire|}{|X^{2}-1|}$ are there
 $\frac{|x^{2}-1|}{|X|} = \frac{|x-1|}{|X|}$
up to isomorphism over k ? Answer: Two: V_{1} and V_{-1}
 $k = 1R$. 1-dim modules of $\frac{|kire|}{|X|} = \frac{1}{|X|}$
 $k = 1R$. 2-dim modules of $\frac{|kire|}{|X|} = \frac{1}{|X|}$.
 $K = 1R$. 1-dim modules of $\frac{|kire|}{|X|} = \frac{1}{|X|}$.
 $K = 1R$. 1-dim modules of $\frac{|kire|}{|X|} = \frac{1}{|X|}$.

Next time: gp actions! gp representations. and reps/modules of gp algebras.