Last time: iso. and correspondence thus for modules

. external vs. Internal direct rums

Prop 1. Let M be a module of an algebra A, and (Mi) it I submoduler of M, Then she map $\varphi: \bigoplus_{i \notin I}^E M_i \to M$, $(m:)_{i \notin I} \mapsto \sum_{i \notin I} m_i (r_{im} in M)$ is an $\overline{1}_{50}$, $\overline{1}_{2}$, $M \cong \bigoplus_{i \notin I}^E M_i$, iff $(Mi)_{i \notin I}$ satisfies the condition in the def. of internal direct sums, ie, i) $M = \sum_{i \notin I} M_i \cap \sum_{i \notin I} M_i \cap \sum_{i \notin I} M_i = 0$.

Today: · more on direct sums

- modules of letal and its quotients

1. More on direct sums

Pf: (sketch) Note that

(a) The map of is a module hom. (EX.)

 $\varphi(\alpha, (m_i)_{i \in I}) = \varphi((\alpha, m_i)_{i \in I}) = \overline{\zeta}_{i \in I} \alpha, m_i = \alpha, \overline{\zeta}_{m_i} = \alpha, \varphi((m_i)_{i \in I})$

15) The map of is surj. If $M = \sum Mi$, ie, iff Condition 11) holds.

(c) We claim that φ is inj. (equivalently, ker φ) = 0) iff (and then (2) holds:

"if": Suppose and this (3) holds. To prove ker $|\varphi\rangle$ = 0, suppose otherwise and take

0 \del [mi]; el Ekerg. Then for some jel ve here mj \del.

Since $(m_i)_{i \in I} \in \text{ker} q$, we have $\sum m_i = \varphi((m_i)_{i \in I})) = 0$, so $m_j = -\sum_{i \neq j} m_i$ where the left side is in m_j and the postat side is

in $\sum M_i$. By Condition (2), both sides must be 0, if j.

Contradicting the assumption—that $m_j \neq 0$.

It follows that 4 is inj.

only if " . Ex. (smiler idea.)

they of the same o

Point of the Prop :

(andition) (1) and (3) are criteric for reagnize when M is

(molition) (1) and (1) are criteria for reagnize when 101 1

isomorphic to GEM:.

Examples of direct sum,

(b)

(a) Let $A = M_n(k)$ and consider the regular module A (A A A ...)Let $C_i = \left\{ \left[0 \dots o \middle| * \middle| o \dots \right] \right\} = \left\{ \text{ matries whose entries one all zero outside} \right\}$

Recall from linear algebra that M. [Vi|vz|-- |Va] = [M·Vi] -- | m·Vi) YM & A.

It follows that M.C: \(\sigma \) Ci \(\sigma \) and Ci \(\sigma \) Submodule of A \(\sigma \).

Note that \(\left(\cdot \) \)

Note that (Ci) | Eisn sortifies undithing 11) & cz), s. $A \cong G$ C: as modules.

Note: Incidentally, all the modules C_i are iso, to the natural module $V = \mathbb{R}^n$ via the module iso. $V: C_i \to V$, $[--|V_i|--] \mapsto V_i$

Ex 2.6: The regular module of a path algebra A = kQ for a guver Q = (Qo, Q,)is iso, as a module, to the direct sum & Ali. (HW.)

2. Modules of le[x] and its quotient. A:=le[x]

Key observations: The algebra k[x] is generated by and x as an algebra,

and on any module M of A 1 has to act as identify, so the action of A

Notation; If V is an A-module with X acting as a linear map $(X:V\to V) \in \text{End}_R(V)$,

ther we denote V by Va.

Prop: Let V be a v.s. and let $d:V \rightarrow V$ be an arbitrary linear map. Then we can make V a leta)-module by declaring that $f \cdot V = \underbrace{f(a)}_{[Val_{a}\cup F]} \cdot V \qquad \forall f \in [ata]_{[Val_{a}\cup F]} \cdot V \in V$ Evaluate)

egg $f = x^{2}-2x \longrightarrow f$ acts as $f(a) = Eval_{a}(f) = d^{2}-2x$.

f = x' - 2x \longrightarrow f acts as $f(d) = \text{trd}_{d}(f) = d' - 2d$. in particular, x acts as x = (s) the regulating module is just (s)

Point: Vol does exist for all of End(V).
What need) proof? We need to prove that the definition (x) satisfies the

module axions. (Try the proof!)

Next time, the proof; modules of quotients of letal.