1. Prop 1.

2. Modules of rings and algebras
$$f: a field$$
.
Def: A (left) module over/of a ring R is an abelian gp (M, +)
well almost always only talk about left module
with an action of R, i.e., a map $R \times M \rightarrow M$, w/ the following properties.
(Y, m) \mapsto rim
· $\forall r \in R$, $r \cdot (m + n) = r \cdot m + r \cdot n$ (the action of r respect addition in M,
 $\cdot \forall r \cdot s \in R$, $n \in M$,
($r + s$) $\cdot m = r \cdot m + s \cdot m$
 $r \cdot (s \cdot m) = (rs) \cdot m$
 $J_R \cdot m = m$

Remarks: (Module theory generalize linear clystera.)
(1) Modules of rings generalize sector spaces of fields:
if
$$R = k$$
, a field, then an R -module is just an obelian gp $(M, +)$
with a k -action site the four arises are satisfied
Values, $m, \kappa \in M, C (m+n) = c + c + c + n$, $(c+d) \cdot m = c + d + m$, $(cd) \cdot m = C(d-m)$, $[\cdot m = m]$.
That is, a k -module is precisely a kenedow space, with the scaling
map being the action.
(2) Modules of k-algebras are automatically k -vector spaces:
(Lemma 2.K)
Let A be a k-algebra. The scaling map on an A-module M can
be defined use the embedding $L: k \to A$, $\pi \mapsto vi \cdot 2s$, i.e., by
defining $\pi \cdot m := (L_i) \cdot m = (\Lambda \cdot l_i) \cdot m$. $\forall \lambda \in k, m \in M$. Finillar form before.
EX. Prove : this scaling map maker M a kerts.

Examples of modules
(1) Again: k-vector spaces = k-modules.
(3)
$$\mathbb{Z}$$
-modules.
(4) \mathbb{Z} -modules.
(5) \mathbb{Z} -modules.
(6) \mathbb{Z} -modules.
(7) \mathbb{Z} -modules.
(8) \mathbb{Z} -modules are the and \mathbb{Z} when an R-module is certainly on abelian $g_{\mathbb{P}}$.
(9) \mathbb{Z} -modules are the and \mathbb{Z} when an R-module is certainly on abelian $g_{\mathbb{P}}$.
(9) \mathbb{Z} -modules are the and \mathbb{Z} of \mathbb{Z} and \mathbb{Z} and \mathbb{Z} and \mathbb{Z} and \mathbb{Z} and \mathbb{Z} .
(9) \mathbb{Z} -modules are the and \mathbb{Z} and \mathbb{Z} .