S_{3} : permutations of $\{1,2,3\}$ Coxeter diagram $s_{1} \quad s_{2}$

$$
S=\left\{s_{1}, s_{2}, s_{i}=\left(i i^{2}\right)\right.
$$

Relations: - $s_{1}^{2}=s_{2}^{2}=1=i d$

$$
\cdot s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
$$

S_{4} : permutations of $\{1,2,3,4\}$

$$
\begin{aligned}
S & =\left\{s_{1}, s_{2}, s_{3}\right\}, \quad s_{i}=(i \quad i+1) \\
\text { Relations: } & \cdot s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=1=i d \quad s_{1} s_{3}=s_{3} s_{1} \\
& \cdot s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \\
& : s_{2} s_{3} s_{2}=s_{3} s_{2} s_{3}
\end{aligned}
$$

$B_{4} \quad$ Generatingset: $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$
Relations: $\cdot s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=s_{4}^{2}=1=$ id

- Commuting ginurators

$$
\begin{aligned}
& s_{1} s_{4}=s_{4} s_{1} \quad s_{2} s_{4}=s_{4} s_{2} \\
& s_{1} s_{3}=s_{3} s_{1},
\end{aligned}
$$

Ads lika remernomint phe mow

- Braid Relations are cames
$=s_{1}(\oplus(11))$
$=(11)$
$B_{4} \xrightarrow[s_{1}]{0_{1}^{4}} \quad \begin{array}{lllll}s_{2} & s_{3} & s_{4}\end{array}$
Draw the reduced word graph of $\omega=S_{1} S_{2} S_{1} S_{2} S_{3} S_{2} S_{1}=1212321$

"Matsumoto's Theorem" Can move from any reduced expression of a fixed $w \in W$ to any other using only commutations and braid relations.

Fully Commutative Elements:
Def: If for any two reduced expressions \bar{w}_{1} and \bar{w}_{2} for well, we can obtain one from the other using only commutations, then we say ω is folly commutative.

Criterion: (Stembridge)
An elemut $\omega \in W$ is fully commutative if and only if no reduced expression for ω contains an opportunity to apply a braid move
depends on the length of the relation

Q How can we tell if ar element is fully commutative (FC)?

- The def. suggests we draw the fill reduced word graph.
- The criterion suggests checking all reduced expressions.
- Use heaps!
- Define via examples!

Heaps!
Example 1: $S_{5}\left(\begin{array}{llll}0 & & \cdots & 4 \\ 1 & 2 & 3 & 4\end{array}\right)$

$$
\begin{aligned}
& S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2} \\
& S_{2} S_{3} S_{2}=S_{3} S_{2} S_{3} \\
& S_{3} S_{4} S_{3}=S_{4} S_{3} S_{4}
\end{aligned}
$$

$$
\omega=S_{1} S_{2} S_{3} S_{4} S_{2} S_{3} \quad(\text { not } F C)
$$

$$
w=s_{1} s_{3} s_{2} s_{4} s_{1}
$$

To -do for next Thursday (2/6/2020)

- In the symmetric grope, S_{5}, draw the heaps for the following words:
- $S_{1} s_{3} s_{2} s_{1} s_{4} s_{3}$
- $s_{4} s_{2} s_{1} s_{3} s_{2}$
- $s_{3} s_{1} s_{4} s_{3} s_{1} s_{2}$

$$
\cdot S_{3} S_{2} S_{4} S_{1} S_{2} S_{3}
$$

- Are any of these words equal in S_{4} ?
- Are any of these words reduced?
- Do any of these wards represent fully commutative elements?
- In either S_{4} or type B_{4}, find an element with at least 3 heaps!
- What properties of the heap of a word show that it is the heap of a filly commutative element?
(look at Stembridge's criterion)
- For thought: Let W be the group with the diagram

(-vertices are generators that square) to the identity;
- edges indicate relations of the firm $|2|=212$;
- vertices not connected by an edge commute
- Tell me whatever you can about the element represented by the

$$
\omega=a b x y z c d z y x a b x
$$

$\left(\begin{array}{l}\text { Is it reduad? What might the heap look like? Is it FC? } \\ \text { What else do you want to know? }\end{array}\right.$

