Math 8174. Homework 8
(You do not have to hand this in.)
Note: $[\mathrm{Hum}]=$ Humphreys, $[\mathrm{EW}]=$ Erdmann-Wildon
(1) Read Sections 21.2 and 21.4 of [Hum].
(Fix an algebraically closed ground field k of characteristic 0 below.)
(2) Let (C, Δ, ε) be a coalgebra (over k). Show that the dual space $A:=C^{*}$ is naturally an algebra (describe the multiplication and unit for A first).
(3) Let $(B, \mu, \eta, \Delta, \varepsilon)$ be a bialgebra.
(a) Show that if B admits an antipode making it a Hopf algebra, then the antipode is unique.
(b) Show that if B is cocommutative, then for any B-modules V, W, the natural isomorphism of vector spaces $\varphi: V \otimes W \rightarrow$ $W \otimes V, w \otimes v \mapsto v \otimes w$ is an isomorphism of B-modules.
(4) Let $(H, \mu, \eta, \Delta, \varepsilon, S)$ be a Hopf algebra and let $\operatorname{rep}(H)$ be the category of finite dimensional left H-modules. Let V be an object in $\operatorname{rep}(H)$, i.e., let V be a finite dimensional H-module. In class we described how to make the dual space V^{*} an H-module by using the antipode S. Consequently, the tensors $V^{*} \otimes V$ and $V \otimes V^{*}$ are H-modules. Now consider the linear maps

$$
\mathrm{ev}_{V}: V^{*} \otimes V \rightarrow k, f \otimes v \mapsto f(v)
$$

and

$$
\operatorname{coev}_{V}: k \rightarrow V \otimes V^{*}, 1 \mapsto \sum_{i=1}^{n} v_{i} \otimes \hat{v}_{i}
$$

where $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V and $\left\{\hat{v}_{1}, \ldots, \hat{v}_{n}\right\}$ is the corresponding basis of V^{*} with $\hat{v}_{j}\left(v_{i}\right)=\delta_{i j}$. Prove that ev_{V} and coev_{V} are both homomorphisms of H-modules, then show that

$$
\left(\mathrm{id}_{V} \otimes \mathrm{ev}_{V}\right) \circ\left(\operatorname{coev}_{V} \otimes \mathrm{id}_{V}\right)=\mathrm{id}_{V}
$$

and

$$
\left(\mathrm{ev}_{V} \otimes \mathrm{id}_{V^{*}}\right) \circ\left(\mathrm{id}_{V^{*}} \otimes \operatorname{coev}_{V}\right)=\mathrm{id}_{V^{*}}
$$

(The equalities imply that V^{*} is a left dual of V in $\operatorname{rep}(H)$ in a categorical sense.)
(5) Prove the fact that " $\Lambda^{j}(V) \cong L\left(\omega_{j}\right)$ for all $1 \leq j<n$ " in type A_{n} from the notes of December 7th. Do we similarly have $V \cong L\left(\omega_{1}\right)$ for the natural module V and fundamental weight ω_{1} in type B_{n} ?

