MATH 8174. HOMEWORK 7 Due Monday, November 30

Note: [Hum] = Humphreys, [EW] = Erdmann–Wildon

- (1) Read Chapter 18 of [Hum].
- (2) Let L be a Lie algebra and let $\varphi : L \to L$ be an automorphism of L. Prove that φ respects the Killing form κ in the sense that $\kappa(\varphi(x), \varphi(y)) = \kappa(x, y)$ for all $x, y \in L$. This fact was used on the last page of our notes for November 11.
- (3) Let $L = H \oplus (\bigoplus_{\alpha \in \Phi} L_{\alpha})$ be the Cartan decomposition of a complex semisimple Lie algebra L with respect to a Cartan subalgebra H. Let Δ be a base of the root system Φ . For each $\alpha \in \Phi$, fix a nonzero element $e_{\alpha} \in L_{\alpha}$ and let $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ be the corresponding \mathfrak{sl}_2 triple in L (so $y_{\alpha} \in L_{-\alpha}$ and $h_{\alpha} \in H$).
 - (a) Show that if φ is an automorphism of L such that $\varphi(e_{\alpha}) = -f_{\alpha}, \varphi(f_{\alpha}) = -e_{\alpha}$ for some $\alpha \in \Phi$, then $\varphi(h_{\alpha}) = -h_{\alpha}$.
 - (b) Prove that there exists an automorphism of L such that $\varphi(e_{\alpha}) = -f_{\alpha}, \varphi(f_{\alpha}) = -e_{\alpha}$ and $\varphi(h_{\alpha}) = -h_{\alpha}$ for all $\alpha \in \Delta$.
 - (c) Let φ be an automorphism satisfying the conditions in (b). Is is necessarily true that $\varphi(e_{\alpha}) = -f_{\alpha}, \varphi(f_{\alpha}) = -e_{\alpha}$ for all $\alpha \in \Phi$ and $\varphi(h) = -h$ for all $h \in H$? Explain your reasoning.
- (4) Let L be an abelian Lie algebra over a field k, say with basis $\{x_1, \ldots, x_n\}$. What is the universal enveloping algebra of L like?
- (5) Prove that the PBW basis theorem implies the other version of the PBW theorem ([Hum] Theorem 17.3, i.e., our "Theorem 1").
- (6) Let k be a field of characteristic 0. The first Weyl algebra over k is the algebra $A_1 = A_1(k) := k \langle x, y \rangle / \langle yx = xy + 1 \rangle$. Prove that the set $\beta = \{x^m y^n : m, n \in \mathbb{Z}_{\geq 0}\}$ form a basis of A_1 in the following two ways.
 - (a) First show that β spans A_1 . Then explain why we can make the polynomial ring V = k[t] a (left) module of A by letting xand y act linearly by $x \cdot f = t \cdot f$ for all $f \in V$ and $y \cdot t^n = nt^{n-1}$ for all $n \ge 0$ (so y acts as differentiation with respect to t if we view f as a function). Finally, use V to show that β is linearly independent (and hence a basis).
 - (b) Use Bergman's diamond lemma to show that β is a basis of β . Make sure you explain the setup clearly.