Last time: Serve's Thm. Roughly: A s.s. Lie algebra
$$\lfloor |w|$$
 usual
deta of H, $\overline{\Phi}$, Δ , say $\Delta = Sa.$, $\dots \neq Q$, C) \overline{D} generated by
 $\begin{cases} e_i := e_{\partial i}, f_i := f_{\partial i}, h_i = h_{\partial i} \ (\leq i < l \end{cases}$
subject only to the relations
(1) Eh.: h_j] = 0 $\forall i.j$
(2) $[h_i, e_j] = \langle d_j, d_i ? e_j = C_j e_j$.
 $[h_i, f_j] = -C_j e_j$
(3) $[e_i, f_j] = S_{ij} h_i$
(4) $(ade_i)^{le_j} = S$, $(adf_i)^{le_j} f_j = S$.

Def 2: The universal enveloping algebra (UEA) of a Lite algebra L over k
(here L I allowed + be inf. dimensional) is a pair (U, i) where U is
an associative algebra and is Is a map i: L
$$\rightarrow$$
 U of.
 $i([Xy]) = ([i(X).i(Y)]_{U} =) i(X)i(Y) - i(Y)i(X)$
(i.e., it's an accurative algebra with a Lite algebra ham from L) which
satisfies the following universal property: for any associative algebra A and
any liteor map $\mathcal{G} : L \rightarrow A$ sit $\mathcal{G} L(XY) = \mathcal{G} (X)(\mathcal{G}(Y) - \mathcal{G}(Y)(Y))$ there $\mathcal{G}_{X,Y} \in L$,
there exists a unique also algebra humanophism for which the diagram
 $L \xrightarrow{i} U$
 $\mathcal{G}_{Y,Y} = \overline{\mathcal{G}_{Y,Y}}$ Commutes.

• A U-nodule is of course
$$c$$
 v.s. V with an algebra hom
 $f: U \longrightarrow End(U)$ (V is a U-module with action $u \cdot V = P(u)(v)$).

The commutative drage or in Def 2 says that any L-module is notwordly
a U-module: Induce
$$\beta$$
 as $\overline{\varphi}$ in the above nutation. $\varphi(\overline{z}, y) = \varphi(z_0)\varphi(y) - \varphi(y)\varphi(y)$
 $L \xrightarrow{i} U$ (invessely, any U-module \overline{D} notwordly an L-voodule
 $\varphi \xrightarrow{i} \overline{\psi} = : \beta$
 $A = \overline{b}dUU$)
So one can we tool from (rep) theory of assocratic dyebras (rigs.

I. Algebra review
. Tensor algebras
Given any vector space
$$V$$
, the tensor algebra $\mathcal{A} = V$ is the
vector space $T(U) = V_0 \in V, \in V_2 \in \cdots \in V_k \in \cdots$
where $V|_k = V \oplus V \oplus \cdots \oplus U = V^{\oplus k}$, with $V_0 = k$. The product on
 K copies
 $T(V)$ is tensoring. If
Note that V returnally embeds into $T(V)$ by the map $U: V \rightarrow V_1 \hookrightarrow T(U)$
 $\mathcal{A}(v, recall that $T(V)$ is the universal associative algebra gen. by V
in the following sense:$

For any associative algebra A and any k-linear noj
$$\varphi : V \rightarrow A$$
,
there exists a unique algebra han $\overline{\varphi} : \overline{1}(v) \rightarrow A$. It the dragram
 $V \xrightarrow{i} \overline{1}(v)$
 $V \xrightarrow{i} \overline{1}(\overline{\varphi}) \cdot alg$. (open utter).
 $\lim_{v \to \infty} \max_{v \to v} A$ how.
 $f: Existence: let \overline{\varphi}(V, \overline{v}V_{2} \overline{v} \cdots \overline{v}v) = \varphi(V_{1}) \varphi(V_{2}) - \cdots \varphi(V_{k})$, extend linearly
and check that if units.
 $\lim_{v \to \infty} uenev : N_{0}$ choice, (V) is forced by the comm. dragram.

$$(1) = (1) + (1)$$

$$The Construction of the UEA.$$
Let $U(L) = T(L)$

$$C \times ey - ye \times - [x,y] = xey - yex.$$

$$Thm: U(L) \overline{is} = UEA of L (uM i: L \xrightarrow{i_T(U)} T(L) \longrightarrow U(U)).$$
Pf:
$$I = \frac{i_T(U)}{4} = \frac{1}{2!} \frac{1}{6} = \frac{1}{6$$