Lest time:
$$\overline{E}, \overline{\Psi}, \Delta \text{ (freed base)}$$

Weyl gp W. $Def: W_0 = \langle S_X : \times E_\Delta \rangle \subseteq W$.

Thun: $W: S_0 = \langle S_X : \times E_\Delta \rangle \subseteq W$.

Thun: $W: W_0 = \langle S_0 : \times E_\Delta \rangle \subseteq W$.

Pf: Suffice to consider $S_0 \in \overline{\Psi}$. (if $S_0 \in \overline{\Psi}$, then $S_0 \in \overline{\Psi}$, so get

Pf: Suffice to consider $\beta \in \overline{\xi}^{\dagger}$. (if $\beta \in \overline{\xi}^{\dagger}$, then $-\beta \in \overline{\xi}^{\dagger}$, so get $g' \in W_0$, $\sigma \in S$ so $g' \in W_0$) so $g' \in W_0$, $\sigma \in S$ so $g' \in W_0$ so $g' \in S$, works.)

Then $G \in \overline{\xi}^{\dagger}$. Use industrian on $ht(\beta)$

(Recal: $ht(x_{0}^{T} k_{y}^{T}) = \Sigma k_{\sigma}$.) (f $ht(\beta) = 1$, $\beta \in \Delta^{2}$, s. g = e works.

If
$$ht(\beta) > 1$$
. Say $\beta = \overline{1} \text{ kg} \times \text{ with}$

O $\text{kg} \ge 0 \text{ for } \delta + \delta = 0$, and $\text{kg} \ge 0 \text{ for } \delta + \delta = 0$.

Then since $\Theta(\beta, \beta) = \overline{1} \text{ kg}(\delta, \beta) = 0$ ($(\beta, \beta) \ne 0$ since $\beta \ne 0$),

We must have $(\delta, \beta) = (\beta, \delta) > 0$ for some $\delta \in O$.

Consider $\delta_{\gamma_0}(\beta) = \beta - \langle \beta, \delta \rangle > 0$.

Recall that $\delta_{\gamma_0}(\beta) = \beta - \langle \beta, \delta \rangle > 0$.

Recall that $\delta_{\gamma_0}(\beta) = \beta - \langle \beta, \delta \rangle > 0$.

On the other hand, we must have $\delta_{\gamma_0}(\beta) \in \mathcal{F}^{\dagger}$.

On the other hand, we must have $\delta_{\gamma_0}(\beta) \in \mathcal{F}^{\dagger}$.

By induction, $\delta_{\gamma_0}(\beta) = \delta_{\gamma_0}(\beta) = \delta_{\gamma_0}$

Action of the Weyl gp on Weyl chambers and Bases (E.). Recall the bijection { Weyl chambers of F} < Bores of \$\frac{1}{2}\$ Conn. comp. of E/UHa Notation: (f & 1) regular, regular ell1 we denote the chamber it; in $\left(\begin{array}{c}
\frac{\text{take}}{\text{any}}, & & \\
\text{Side of } & \\
\end{array}\right)$ indeamp. on

Side of $& \\
\text{Side of } & \\
\end{array}$ by C(T). ((b):={regular Y:(x,1)20} Upshot: Wack on both sides and the action are compatible.

Morever, both action (are fail heful and fransitive.

Observe that: Let 96 W. 11) If On a base of \$\frac{1}{2}\$, then so 7 so W auts on the $0' := g(0) := \{g(0) : d \in d\}.$ Pf: Need to check the base axims for 6. (B1) \triangle' should be a basis. \rightarrow True: \triangle Da basis, and gf GliE) D an automorphism of E. (BZ) Need \(\begin{array}{c} \in \begin{array}{c} \pi \in \begin{array True: gillnear, so it preserves linear comb. # β € £.] ky, σ € 0 st. β = Z ky r, kr > 0 ~ kr ≤ 0 } all elts in & can be written this way.

(2). If r is regular, then so n g(x). Pf: $\forall x \in \mathcal{Z}$. then $x = g(\beta)$ for some $\beta \in \mathcal{Z}$ (take $\beta = g^{-1}(x)$). So $(g(x), d) = (g(x), g(\beta)) = (f, \beta) \neq 0$ since f is regular. S. g(x) i) regular. D · If (i) a Weyl chamber then so is g(C), Pf: Suffices to consider 9: Sx. d . d . E. w) Take r ← C so that (: Cls). Then g(r) is regular and g(s) ∈ g(C). b) q i) a reflection. So it's continuous, so it maps conn. sets to connected set, so g(C) lies in a unique chamber. necessarily Clg(x)). ie. $g(C) \subseteq C(g(x))$.

(c)
$$g^2 = 5x^2 = e$$
, s.
 $e(g(x)) = g(x) = g(x)$ $= g(x) = g(x) = g(x)$

So
$$gC = C(g(a))$$
. g

13). The actions are compatible: $g(C(a)) = C(g(a))$ for every base $a \in E$.

Pf: Take $Y \in C(0)$. Then $g(C(0)) \ni g(Y)$. so It suffres to show that $g(Y) \in C(g(0))$. This is true since $\left(g(Y), g(Y)\right) = \left(Y, O\right) \ni Y \circ Y \circ G$.

Harder results:

Thm1. Let S= { Sa: 2(0) for each base D of \(\overline{\Phi} \).

Then (W, S_{Δ}) is a Coxeter system for every base $\Delta \neq \Phi$.

Consequence: Elts of W have length: $l(w) = [\min l. s.t. W = s., -se]$.

For some $s., -se \in S_{\Delta}$. $l(w) = [sd \in \Phi] | W(d) \in \Phi_{\Delta}$ of $W \in W$.

This. Wacts simply transitively on the set of bases of £, ie, () Given any two bases Δ , δ' of $\tilde{\mathcal{L}}$. $\tilde{\mathcal{L}}$ $g \in \mathcal{W}$, set $\delta' = g(\delta)$. (transhvity) @ For any base of \$. if g(d) = O for some g \(W. then g = e \) ("simply")

Corol: Wasts simply transitively on the Weyl chambers. Pf: Thm 2 + Ob. (3). Ex: Formulate and prove the corollary more carefully Coro 2: We can define a well-defined graph for $\overline{\phi}$ via any base Δ of $\overline{\Phi}$ which has vertex set Δ and with of $\overline{\Phi}$. $d\omega \beta := \langle \Delta, \beta \rangle \langle \beta, \omega \rangle$ edger lines between & and B & J. BED. (We'll do this more carefully soon) Well-defined, difference bases give the same graph. (up to relabeling vertices) up Pf: O. O' -> IgeW D'=g(D). dglasglp) = dap since g preserve) (.).