Last time: Bijerton
$$\{Weyl chambers\} \iff [bases of \overline{\Phi}].$$

 $\overline{\sigma} \in E$
Today: Weyl gp : $subgp W$ of $Gl(E)$ generated by the
reflections $S_{\sigma} : \beta \mapsto \beta - (\beta, \sigma') d = \beta - \frac{2(\beta, \sigma')}{(\sigma, \sigma)} \chi$
 $(\chi \in \overline{\Phi})$
We'll see $(\chi) W = \langle S_{\sigma} : 2 \in \Omega ?$ for any base $S = \overline{\Phi}$.
Next time: $(perhaps)$ Action of Weyl Sp on Chambers and bases.
Preparation for (χ) : Recall that $W \stackrel{def}{=} \langle S_{\sigma} : \alpha \in \overline{\Phi} ? S \in Gl(\overline{E})$
 $\overline{Tix} \circ bese S \circ \overline{\Phi} = \overline{\Phi}.$

(1). Prop.
$$Su^{2} = 1_{\tilde{e}} \quad \forall v \in \tilde{e}$$
.
Pf 1. "of couple, reflections are involution."
 $Ff = \frac{2(v, w)}{(w, w)}$
 $\forall v, w \in \tilde{e}, w \neq 0.$
 $Pf = \frac{1}{v} \quad \forall v \in \tilde{e}, \quad S_{d} \quad S_{d} \quad (v) = \frac{1}{s} \frac{(v - \langle v, d \rangle d)}{v}$
 $= \frac{1}{v} \frac{1}{v} \quad (v = \sqrt{v}) \frac{1}{v} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle d} - \frac{1}{\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle v, d \rangle} \frac{1}{v}$
 $= \sqrt{-\langle$

(2). By our proof/wrstruction of bases of
$$\overline{\mathbf{z}}$$
, we have $\overline{\mathbf{D}}^{\dagger} \subseteq \sum_{\mathbf{v} \in \overline{\mathbf{z}}} \overline{\mathbf{z}}_{\mathbf{z} \circ} d$
(and hence $\overline{\mathbf{z}} \subseteq \sum_{\mathbf{v} \in \overline{\mathbf{z}}} \overline{\mathbf{z}}_{\mathbf{z} \circ} d$). In particular, for any $\beta = \sum_{\mathbf{v} \in \overline{\mathbf{z}}} \overline{\mathbf{k}}_{\mathbf{z} \circ} d \in \overline{\mathbf{z}}^{\dagger}$,

we may define the height of
$$\beta$$
 to be the integer $ht(\beta) := \sum_{\substack{\gamma \in \Delta}} k_{\gamma}$.

Heights are often useful in inductive proofs.

(4). Papes Hole & get W. we have
$$g S_{d} g^{-1} = S_{g}(J)$$
.
Pf: H pe \overline{e} . $g S_{d} g^{-1} (g(\overline{p})) = g S_{d} (p)$
Define $\gamma := g(\overline{p})$
 $= \begin{cases} g(\overline{p}) & if \beta \in H_{d} (g(\overline{p})) = g(\overline{p}) \\ g(-p) = g(\overline{p}) & if \beta = \alpha \\ g(-p) = g(-p) & if \beta = \alpha \\ g(-p) = g(-p) & if \beta \\ g(-p) & if \beta \\ g(-p) = g(-p) & if \beta \\ g(-p) & if \beta \\$

Theorems on Weyl Sps. Thr. I. W 73 finite.

First we prove a lenne and a prop.
Lemma.
$$d \in \Delta \implies Ja$$
 permutes $\Delta t | \{d \in J\}$.
Pf: Take $\beta \in \mathbb{P}^t | \{d\}$. Then $\beta = \mathbb{Z} k_{\mathcal{T}} \mathcal{T}$ where $k_{\mathcal{T}} \neq 0$ for some
 $\mathcal{T} \in \mathcal{L} \setminus \{d\}$. Now consider
 $J_{\mathcal{L}}(\beta) = \beta - \langle \beta, d > d = \mathbb{Z} k_{\mathcal{T}} \mathcal{T} - \langle \beta, d > d$.
In the expansion of the difference in terms of Δ , $k_{\mathcal{T}}$ remains the same,
with $k_{\mathcal{T}} \neq 0$. So $S_d(\beta) \in \mathbb{F}^t$. Also, $S_d(\beta) \neq d$ since otherwork $\beta = -d$. I.

Asde: Grove Let
$$p=\frac{1}{2}\sum_{r\in I} r\in E$$
. Then $S_{\sigma}(p)=p-\sigma \quad \forall \sigma \in O$.
Pf: $p=\frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta$. By the bound a,
 $PeIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
 $peIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
 $peIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
 $peIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
 $peIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
 $peIII = \frac{1}{2}\sigma + \frac{1}{2}\sum_{r\in I} \beta = p-\sigma$.
Note that $Then \exists g \in \langle S_{I} : r \in O \rangle \leq W$ and $d \in O$ it. $\beta = g(\sigma)$.
Note that $Then 2$ follows immediately from the prop:
 $Pf: Let W_{0} = \langle S_{I} : r \in O \rangle$. We want σ show $S_{I} \in W$ for all
 $\beta \in I$. By the pop and observation (4),
 $S_{I} = \frac{1}{2}S_{I} = \frac{1}{2}\int_{T}^{T} for some g \in W_{I}$ and $d \in O$. so $S_{I} \in W_{0}$. \Box