Lost time: - Pairs of roots
- Base: A base of a root system
$$(\overline{\epsilon}, \overline{\epsilon})$$
 is a base 0 of
 $\overline{\epsilon}$ set $\stackrel{(a)}{\rightarrow}$ is either a nonnegative lim. comb of the
ells of 0 or a nonpus. In comb of the ell of δ .
Thus: $\overline{\epsilon}$ very not system $(\overline{\epsilon}, \overline{\epsilon})$ has a base.
Pf: $dm\overline{\epsilon} = 1: dovion.$ $dim \overline{\epsilon} \ge 2:$ take any $\forall \epsilon \in \overline{\epsilon} | \bigcup_{\sigma \in \overline{\epsilon}} \bigcup_{\sigma \in \overline{\epsilon}} dm \overline{\epsilon} + \frac{1}{2}: dv \overline{\epsilon} = \{ d\alpha \not \beta : (\alpha, \vartheta) \neq 0 \}, \quad \overline{\epsilon} \not s = \{ d\alpha c \not \beta : (\alpha, \vartheta) \leq 0 \}$
and let $O(\vartheta) = \{ n decomposables (n \in \overline{\epsilon}) \}.$
Chave: $O(\vartheta) \Rightarrow a base.$ root a sum $\forall = d + d^{-1}$ where $d', d'' \in \overline{\epsilon} \not s^{+1}$.

If it the claim:
$$Say \Delta(8) = \{d_1, -, -d_2\}$$
.
 O Every eft of \overline{B}_{8}^{+} is a nonnegotivesum of $d_1, ..., dd$.
 $Pf:$ suppose with Picks $d \in \overline{B}_{7}^{+}$ that is not a nonnege. Lin. camb of $d_{1}, ..., dd$.
 $with (d, d)$ minimal. In particular, $d \notin \Omega(d)$, so $d \in O$ decomposable: So
 $d = d' + d''$ where $d', d' \in \overline{B}_{7}^{+}$. Thus, $(d, d) = (d', d) + (d'', d)$
By the minimality assumption, show $\theta(d) > (d', d) = (d', d) + (d'', d)$
have that d', d'' are nonneg. by comb of Δ . But then so is d . Contradiction
 D
 $Contradictions = G$ spans \overline{Q} and hence \overline{E}_{1} and Δ substitus p .

F

Pape. Any base
$$\Delta \text{ of } \overline{P} \text{ D of the form } O(\mathcal{X}) \text{ for some } \overline{FGE} \bigcup_{u \in \underline{V}} H_{u}.$$

(So the map $\Delta : \overline{E} \bigcup H_{u} \rightarrow Boost \text{ f } \overline{E}$, $\mathcal{X} \mapsto O(\mathcal{X}) \exists surj.$)
Pf: Given Δ , we may select $\mathcal{X} \in \overline{E}$ it. $(\mathcal{X}, \mathcal{X}) = \mathcal{V} + \mathcal{L} \Delta$:
- Use Grun-should to get an orthonormal basis $\beta = \overline{Sen}, \dots \in \mathbb{R}$.
Then $\forall d \in \Delta$, $(\mathcal{X}, d) = [\mathcal{X}]_{\beta} \cdot [\mathcal{U}]_{\beta}.$
Take any $C_{1, \dots, CE = 0}$, $\overline{Ci} \text{ ford } \mathcal{X} \cdot st.$ $(\mathcal{X}, \mathcal{U}) = C_{i} i \text{ of then}$
to solve $\begin{bmatrix} [d]_{\beta}^{p} \\ \vdots \\ C^{d} \otimes J_{\beta}^{p} \end{bmatrix} \begin{bmatrix} \mathcal{X} \\ \mathcal{Y} \end{bmatrix}_{\beta} = \begin{bmatrix} c_{i} \\ \vdots \\ c_{i} \end{bmatrix} \text{ for } \begin{bmatrix} \mathcal{Y} \\ \mathcal{Y} \end{bmatrix}_{\beta}.$
Invertible since δ is a basis of \overline{E} , so there \overline{D} a solution.

Expend the right side of (*) Into a lin cardo of
$$O$$
.
(participal)
Since there's no cancellation, no di can have a Xin-comp if $k \neq j$.
So di is a mult of Xj. But $\langle X_j ? \land \bar{\Phi} = \{\pm X_j\}$.
and $O(Y) \sqcap a$ basis, so the sum on the right side
can only enterin one cummend, and it has to be Xj .
This proves $O \subseteq O(Y)$.
Since $[O] = [O(T)] = \dim E = l$, it follows that $O = O(Y)$.

Det: Call each connected component
$$\oint \overline{E} \left(\bigcup_{s \in S} \bigcup_{s \in S}$$