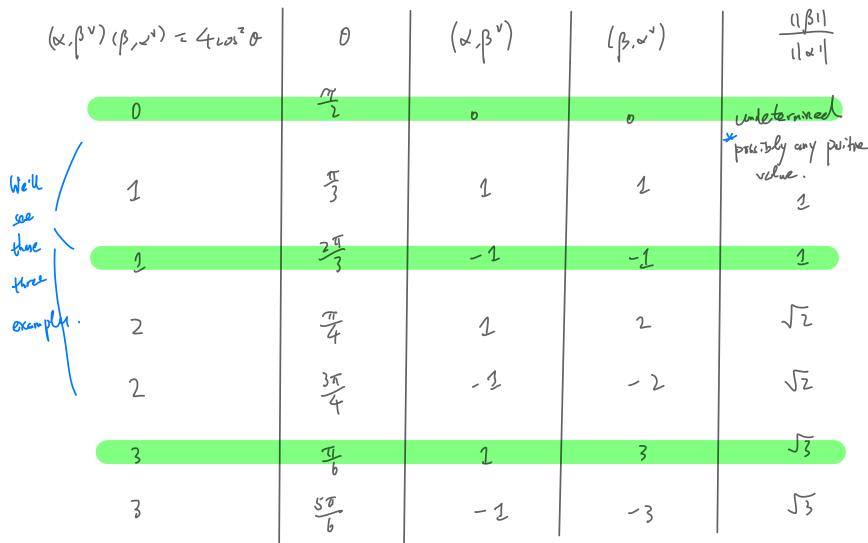
. We'll classify s.s. Lie algebras via classification of root systems. · first observations on rout systems. Today. 2. Pairs of roots (E, E) $\lambda, \beta \in \overline{P}$ $\lambda \neq \pm \beta$.

Note: By the root system axioms. $(R\lambda \oplus IR\beta) \cap \overline{P}$ from a root system in $IR\lambda \oplus IR\beta$. (T, S^{\dagger}) Recall: With $(T, S) = \frac{2(T, S)}{(S, S)} = \forall T, S \in \overline{E}$, we have $(\lambda, \beta^{\dagger}) (\beta, \delta^{\dagger}) = 4 \cos^{2} \theta_{\alpha\beta} \in \{0, 1, 2, 3\}$. $\forall \alpha, \beta \in \overline{P}$

Actually we have if we elsume
$$||\beta|| \ge ||\alpha||$$
 $O(\alpha, \beta^{1})(\beta, \alpha^{1}) \in S_{0}, 1, 2, 3$.

In particular, $(\alpha, \beta)^{1}$ and (β, α^{0}) have the S_{0} and S_{0} if $(\alpha, \beta) \neq 0$
 $O(\alpha, \beta^{1})(\alpha, \beta) = \frac{(\beta, \alpha)}{(\alpha, \alpha)} = \frac{(\beta, \beta)}{(\alpha, \beta)} = \frac{(\beta, \alpha)}{(\alpha, \beta)} = \frac{(\alpha, \beta)}{(\alpha, \beta)} = \frac{($



Note: It's possible to have 0 = 1/2 and 1/81 = r for any r 6 /R>0. Pf: Compute Sp(d) = d - (d, B) B & Z Prop: Let H2 2. B & \(\text{with llBil z (lail)} \) [see pt.

11) If O &B > startly obtuse. (i.e. if O & p > \(\frac{1}{2} \), ie. if (d.B) < 0), then 1) If $O = \beta$ is Strictly acount (i.e., if $O < \frac{\pi}{2}$, i.e., if $(\alpha, \beta) > 0$), then $\alpha - \beta \in \Phi$ (and hence $\beta - \alpha \in E$ as well).

2. Bases of a root system.

Def: A subject $O \subseteq \overline{\Phi}$ is called a base of $(E, \overline{\Phi})$ if: (B1). A is a linear base of E. (B2). each voit $\beta \in \mathcal{E}$ can be written in the form $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$ where either $k_{\alpha} \in \mathcal{E}_{20}$ $\forall \alpha \in \Delta$ or $k_{\alpha} \in \mathcal{E}_{20}$ $\forall \alpha \in \Delta$.

Eg: A Rank-2 but system. T: R, J.P. Oas = = 13. 11x1 = 1131. It's easy to check that

these six rectors form a

roof system.

Thm: Every nort system has a base.

Pf of the theorem: If dim E = 1, then = { = { d, -d} } for some & : E. 50 6=52) world Assume dim E = 2. Then I T & E UHz. Let 重十二月日在 (2,8)20], 重が= {メヒを (は、て) くのり. Then $\bar{\Psi} = \bar{\Xi}_{S}^{\dagger} \cup \bar{\Xi}_{S}^{\dagger}$. Call $\forall \xi \bar{\Xi}_{S}^{\dagger}$ decomposable if $\lambda = \lambda' + \lambda''$ for some $\lambda', \lambda'' \in \bar{\Xi}_{S}^{\dagger}$ and indecomposable otherwise. Let Or = { indecomposable etts in \$\frac{1}{2} \frac{1}{2}. Claim: Of Da base. (So & actually has multiple baser.)
Pf: noch time.