Last time: - Every x EL. Ls.s, has a unique A.J.D. x = dtn s.t (1) add i) dizg (2) adn i) nilp (3) [d. n] = 0. - If L = gl(v) for some V, then $A.J.D(x) = C.J.D(x) \forall x \in L.$ Today. I. Tral regula in Chq. (Ew). L s.s. 0: L -> gelu) rep of L. the artin of d on V Suppose X = d+n 1) the AJO of X. 1 13 ahrays dag. Then the C.J.D of $\theta(x) \in \text{gl}(V)$ is $\theta(x) = \theta(d) + \theta(n)$.

Pf. By researching to the image of θ , we may assume θ is surj. Now Ind (=GL(U)) = L/perd so Ind it s.s. and $AJD(\theta(x))$ notes sense. Moreover, $AJD(\theta(x)) = CJD(\theta(x))$. (Ex). Fact: L., lr semanple. θ : L, -> Lr surj. $AJD(x) = d+n \implies AJD(O(k)) = O(d) + O(n)$ The desired unch sin now follows. II. Application of Then 9.16.

S. S. Lie algebras Via (roop) — eigenfunctions for "d".

Teps of rs. Lie algebras via (wts)

Henceforth in the course, we fix k = C. Recoll from linear olgebra: (EW. 16.3.2.) Let V be f.d. v.s. A collection of diagonal nable maps in End(V) are simultaneously diagnalizable, ie., I a basis of V which is an eigenbasis for all the maps in the collection, if they pairwise commute. To use that and the above fact, consider Det: A s.s. Lie cyclora is toral if out etts of it are s.s. Note: Every ss. Le agebra L has a tral subalgebra. Reason: We can't have x is nilp $\forall x \in L$, otherwise L I nilp, hence solvable, by Engels than. Take x = d + n, $n \neq 0$, then $d \in L$, so $T = \langle d \rangle$ is tirral. I

Now let L be a six Lie algebra and let H be a subalyabra of L that O D toral and @ D abelian. (later: (=> @, so we may just assume H it toral) Then for any rep L -> of(10), we may consider the restoration H- ogl (1). Since H is tomal, every est he H outs on (S) V diagonalizably by than 1. Since H is abelian, V must have a basis β s.t. $V \in \beta$, $h \cdot V = Xh \cdot V + Kh \in H$. $V \cdot V \in \beta$. Note that the dependence $V \mapsto \mathcal{Q}_{K}$ is linear. (e.g. $(2h) \cdot V = \mathcal{Q}_{2h} \cdot V$). S. we'll write &(h) for &h and view & as linear functional in Ht.

Conversely, given any of H*, it makes sense to consider $L_{\alpha} := \{ \chi \in V : h.\chi = J(h) \chi \forall h \in H \}_{-}$ We all Lx a weight space of V; it; After trival. When Lx +0, we say & D a weight. Note: Since V has a simult- eigenbais & for the H-action, each v+ B gives rise to a nonempty was space, and we have V = 0 Lx

$$L_{\infty} := \begin{cases} \chi \in V : h \cdot \chi = J(h) \chi & \forall h \in H \end{cases}_{-}$$

$$E_{\frac{1}{2}} (sh_{2}) \quad L = sh_{2} = \langle e, f, h \rangle & H = \langle h \rangle . \quad ho$$

$$Congreler \quad ad : L \rightarrow gl(L) . \qquad V = L = L_{\frac{1}{2}} G L_{\frac{1}{$$

Eq. (sln).
$$L = sln$$
 $H = \langle e_{ii} - e_{ia}, id : [\langle e_{i} e_{i} - e_{i} \rangle] \rangle - dieg.$
 $\langle e_{ii} - e_{ia}, id \rangle \rangle \rangle \langle e_{ij} : i \neq j \rangle, |E_{ii} = i \rangle \langle e_{ij} - dieg.$
 $L = V$ Claim: These elds form a sinal toneous eigenbase for H ;

Take $h \in H$ (s. h is diagonal) take $\chi = e_{ii} - e_{ia}e_{id}$ or $\chi = e_{ij}$. $e_{ij} = e_{ii}$. $e_{ij} = e_{ij}$.

So $\chi_{ij} \in L_{si-e_{ij}} = e_{ij} - e_{ij}h$ $e_{ij} = e_{ij}(h) \cdot e_{ij}$.

where $\xi: \in H^*$ 3-the function s.t. $\xi: (diag(\alpha_1 - --, \alpha_n)) = \alpha$: