(3) L. s.s => ad L = Der L (to be finished)

Also tiday. Abstract Jordan Decomposition (EW) -> A.J.D.

Last time: (Always work over k=k, chark=o for tiday).

① IEL ideal. Lissis => Issis L=I⊕I⁻.

Results on c.s. Lie algebras

By the result 3, we are done of the fundamental ancepts of Lie agussa. Roughly. since Rad L D solvable and L/Ral L D s.s. for any Lie algebra L, we tried to get structural results on solvable (& nilp) and semisiple algebras Engel's & Lie', Thu,

Cartan's Criteria Next: { I. finer structure of c.s. algebras, via roots and the adj.

[Troots = wts of ad.

[I. structure of reps of s.s. algebras, via "weights"

naed A.J.D. and Weyl's Complote Reducibility Thm.

Derl = MGM2. We'll show that M2 -0. Since M is s.s. Kom is nondegenerates so MMM = o, have $[M,M^{\perp}]=0$. Now $\neq \delta$ is an est in M^{\perp} , then $[\frac{\delta}{\delta}, \frac{\alpha l \times J}{\alpha}]=0$ $\forall x \in L$.

But [S, adx] = adS(x), so adS(x)=0 $\forall x \in L$, so $S(x) = 0 \quad \forall x \in L$. so S = 0.

Abstract Jordan Decomposition.

Prop1. L s.s. SE DerL E of (L). Suppose S = O + V D the (concrete) Jirdan decomp of S. then S, V are both derivations of L as well.

Helpful Lemma. SEDer L, Z, NE K, X, y & L. then

$$\frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}} \left(\left(\frac{1}{\sqrt{12}} \right) \right)$$

 $\frac{1}{4} \frac{1}{4} \frac{1}$ Pf of Pmp1 For $\lambda \in \mathbb{R}$, let $L_{\lambda} = \{x \in L : (\delta - \lambda 1_L)^m x = 0 \}$.

generalised eigenpoor of δ of e-value α .

(e.g.
$$JNF(S) = \begin{bmatrix} \frac{2}{2} & \frac{1}{17} & \frac{1}{17} \\ \frac{1}{17} & \frac{1}{17} & \frac{1}{17} \end{bmatrix}$$
, $L_{\lambda} = 0$ if λ is not an excluse for S .)

By the lemna (*) $[L_{\lambda}, L_{\mu}] = L_{\lambda} + L_{\lambda}$.

Note that since $S = 0 + V$ is the c.J.D. of S , the eigenpoon of of for λ is exactly L_{λ} . $\forall \lambda \in k$. By (*), it fillows that $S = 0 + V = 0$. $\forall \lambda \in k$. By (*), it fillows that $S = 0 + V = 0$.

 $= (\lambda x, y) + (x, ny)$ Yxelm, yelm. - () [x,y]. Therefore σ D a derivation. Thus, $\gamma = \delta - \sigma$ D a derivation. Thm. I s.s. Then each XEL can be written uniquely as a sum Abstract X = d+N where "d is ad-diagonalizable," In is ad-nilp, Jordan Deump. and 13) [d,n] = 0. Furthermore, if [x,y] = 0, then [d,y] = [n,y] = 0. Def: The decomposition $\chi = den$ from the Prop 3 called the A.J.D. of χ .

(01x), y) + [x, 0(y))

On the other hard

(3) [din]=0. Now consider ad x & Der L & of (L). It makes sense to talk about the (concrete) J.D.f. dx = 0+ 1/2. By Prop 1, o, V & Der L. By 3, o = add and V = adn

for some (ad I rij)

But then we have i) and (2). To see is), note that in the C.J.D. $0=[\sigma,\gamma]=[add,adn]=ad[d.n].$ This suplies [d,n] =0 since ad it inj. Y is a poly of alx. Furtherage, , in the C.J.D., recall that

Pf: Neel decomp $\chi = d + n$ st. (1) ad d 7) drag (2) ad n 0 milp.

 S_{i} V(y) = 0 , z_{i} adn(y) = [n, y] = 0. It follows that [d,y] = [x,y] - [n,y] = 0 - 0 = 0Note: For any Lie ayelora L. We now have A.J.D. x=d+n fxc-L. If Lis linear, Ter. LEJELV) for some V. then \times has C.J.D $\times = d+n$ $\forall \times \in L$. \bigcirc earlier Q: Do they necessarily agree ? A: Yes. sixe @ = CJO (adx) = add+adn.

then $V(y) = \left[p(adx) \middle| (y) \right] = Gy$. Since V is not P. C = 0.