Result 1. Prop. If LD s.s and I is a non-trivial proper ordeal in L,
then
$$L = I \oplus I^{\perp}$$
 and I is s.s. if set:
Pf: Let $K = K_{L}$ be the Kirling form on L. Let $J = I \cap I^{\perp}$, then
 $K_{J} = K |_{J}$, and $K_{J}(xy) = K(xy) = 0$ $\forall x.y \in J$.
so $J \supseteq$ softwable by cartain's fibe writerin. Therefore $J = I \cap I^{\perp} = 0$
On the other head, dim $I + dim I^{\perp} = dm L$ (bilmear algebra)
By $G_{1} \otimes$, we muse have $L = I \oplus I^{\perp}$

•

We now show
$$I = 7$$
 s.s. If not, then K_I must be degen.
by (artan's 2nd (riterium, ie., $I a \in I \cdot st$. $K_I(a,x) = 0 \forall x \in I$.
But $K_I = K|_I$, s. $K(a,x) = 0 \forall x \in I$. Since $L = I \oplus I^-$.
 $I \in fillows$ that $K(a, 2) = 0 \forall z \in L$, s. K is degenerate.
This contradicts the i.s. of L .
This contradicts the i.s. of L .
 $I = direct sum of simples''$
 $2esubt 2$. Thus. L is ss $(i = I + I) = direct sum of simples in $I = I \oplus I'$.
Moreover, if L is ss. then every simple release $I = G = I$.
 $guid to I = I \oplus I$.$

Let
$$I \leq L$$
 be a simple ideal. We now prove that $T=I$
for some $I \leq j \leq r$. Note dust $[I, L] \supset$ an ideal of I , so
 $[I, L] = I$ or $[I, L] = 0$. The latter is impubible since it
implies $0 \neq I \leq Z(L) = 0$. so $[I, L] = I$. But then
 $I = [I, L] = \bigoplus_{j=1}^{r} [L, I_j]$.
Since $I \supset$ simple, we must have $[L, I_j] = I$ for some j .
The implies $I \leq Lj$, so $I = Ij$ since Ij L supple.

۰.