Last time:

1. Representations of Lie Algebras. Recau from ring theory that a representation of a k-algebra Ais the dente de la homomorphism $P: A \rightarrow End(V)$ where V is a vector a $\mapsto p(a)$ space. Gun. it's the data of an A-module V set. (1) a acts as a locar map on pla): V-V Vac A tz) The map p: A -> End(V), a +> pla) I lnear. (3) p(a)·p(b) = p(ab) HabeA. Def: A representation of a Lie algebra of over $k \supset a$ Lie algebra ham $\phi: \mathcal{I} \longrightarrow \mathcal{O}(\mathcal{V})$, equivalently, it's the data of a \mathcal{I} midule \mathcal{V} sets

13) Brackets are respected., i.e.,
$$[\phi(x), \phi(y)]_{gl(g)} = \phi([x, y]_g) \psi_{x_j \in g}$$

1.e. that $\phi(x) \phi(y) - \phi(y) \phi(x) = \phi([x, y]_g)$
i.e. $(ad \times ady - ady adx)(z) = ad([x, y])(z) \psi_{z \in g}$
i.e. $[x, [y_z]] - [y, [x, z]] = [[x, y], z] \psi_{z \in g} \psi_{i, y}$
(h.s. huldi by the Jacobi relating.
Rule: As always, having a rep of g allows us to express each of g as motions
 e_{j} . $sl_{z}(c) = c \langle e, f, h \rangle [e, f] = h, th, e_{j} = ze, [h, f] = -zf.$
So in the adj. rep , w.r.t to fe, f, h], we have ad $h = [[-z_0], ade = [\frac{0}{10}]^{0}$

E.g. If
$$g \in q(w)$$
, then certainly $g = xt - V$.
 $e_{f} = g = str \in qt(c^{2})$, $s_{1} = c^{2}$ is a $g - module$.
 $e_{1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$; $e_{1} = w_{0}$, $e_{2} = we_{1}$, $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$; $e_{1} = w_{0}$, $h = c_{1}$, $h = c_{2}$,

Next time: f.d. reps of slr(a),

$$\begin{split} & \underbrace{\operatorname{fg}}_{\operatorname{pr}} & \operatorname{In \ The \ adjoint \ rep} & \operatorname{ad}: g \longrightarrow \operatorname{gfl}(g), \ & \operatorname{triadx}, \\ & \operatorname{ker \ ad} = \left\{ x : \operatorname{ad} x = 0 \right\} = \left\{ x : \left[x, y \right] = 0 \ \forall y \in g \right\} = \operatorname{E}(g) \\ & \operatorname{Cor}: \quad & \operatorname{E}(g) \ & \operatorname{D \ an \ ideal} \ & \operatorname{n \ of} \ & \operatorname{cor}: \\ & \operatorname{Cor}: \quad & \operatorname{If \ g} \ & \operatorname{D \ simple}, \ & \operatorname{then \ } \operatorname{ker \ ad} = 0, \ & \operatorname{so \ ad}: g \longrightarrow \operatorname{gfl}(g) \\ & \operatorname{D \ mj}: \ & \operatorname{so \ gfl} \ & \operatorname{D \ linzer}. \end{split}$$