- (ln.k) = c(n.h-k)

Last time: - germutations vs. combinations: def, notation, computations (subsets)

- · more counting problems
 - U
 - . Combinatorial identities and proofs, eg. $\binom{n}{k} = \binom{n}{n-k}$

Today: . more amb. identifies and proofs, with nzkzo.

including the binomial theorem,

· Counting work sheet

1. Combinatorial identities.

Example 1. Yesterday we saw that

7-degit binary Strags with

an even unriber of
$$2s$$

two sides: (here $\binom{n}{k} = \binom{n}{k}$

Pf 1: We could match the summand on the two sides: Since $\binom{n}{k} = \binom{n}{h-k}$, we have $\binom{7}{1} = \binom{7}{6}$, $\binom{7}{3} = \binom{7}{4}$, $\binom{5}{5} = \binom{7}{7}$, $\binom{7}{7} = \binom{7}{7}$

Pf2 (combinatorial) LHS = # 7-digit bin. story with an odd number of 25.

|| by symmetry, the distriction between the symbols o are 1 is superficial

= # 7 -- - - - - - - - of 05.

|| same condition since 7 is odd

= # 7-digit - - - oven number of 15.

= RHS.

Example 7: Prove that for all integers
$$k, N$$
 with $0 < k < N$,

We have $\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}$.

Eq. $\binom{7}{6} = \binom{6}{6} + \binom{6}{5}$, $\binom{5}{6} = \binom{4}{3} + \binom{4}{2}$.

Pf 1: $\binom{6}{6}$ all integers $\binom{N-1}{2} + \binom{6}{3} + \binom{4}{2}$.

Pf 1: $\binom{6}{6}$ all integers $\binom{N-1}{2} + \binom{6}{3} + \binom{4}{2}$.

Pf 1: $\binom{6}{6}$ all integers $\binom{N-1}{2} + \binom{6}{3} + \binom{6}{3} + \binom{4}{2}$.

Pf 1: $\binom{6}{6}$ all integers $\binom{N-1}{2} + \binom{N-1}{2} + \binom{N-1}$

 $= \frac{(n-1)![n-k+k]}{k!(n-k)!} = \frac{(n-1)!N}{k!(n-k)!} = \frac{n!}{k!(n-k)!} = [n]$

Pf 2: (combinatorial) Consider the task of proking & elts out of the set
$$A = \{a_1, a_2, \dots, a_n\}$$
 with n elts.

On the one hand, by the definition of $\binom{n}{k}$, we know that T can be performed in $\binom{n}{k}$ ways.

On the other hand, the picked elts are either & elts from $\{a_1, a_2, \dots, a_{n-1}\}$, or they include A_n and $(k-1)$ elts from $\{a_1, \dots, a_{n-1}\}$. These possibilities

correspond to $\binom{n-1}{k}$ and $\binom{n-1}{k-1}$ configurations - respectively. It follows that I can be performed in $\binom{n-1}{k} + \binom{n-1}{k-1}$ ways. It further follows that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} = 0$

Example 3: For every
$$N \in \mathbb{Z}_{\geq 0}$$
, we have

$$Z^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}. \longrightarrow P(n)$$

eg.
$$n=0$$
. LHS = $Z^{0}=1$, $RHS = {0 \choose 0} = 1$
 $n=1$. LHS = $Z^{1}=2$, $RHS = {1 \choose 0} + {1 \choose 1} = |+|=2$
 $n=2$. LHS = $Z^{2}=4$, $RHS = {2 \choose 0} + {2 \choose 1} + {2 \choose 1} = |+2+|=4$
 $N=3$. LHS = $Z^{3}=8$, $RHS = {3 \choose 0} + {3 \choose 1} + {3 \choose 2} + {3 \choose 3} = |+3+3+|=8$.

Pf1: (algebrai) One way: mimil and generalize the fillowing induction "

Suppose we have proven
$$P(1)$$
, $P(2)$. $P(3)$, $P(4)$; we prove $P(5)$.

(He will use the help of Example 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Pedace "a choose ..." to

$$P(5) = \binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{3} + \binom{4}{1} + \binom$$

= 25. -> so p(5) holds.

Pf 1: (algebraiz)

Pf2: (combinatorial) Consider the task of Counting all subsets of a set X with n etts, ie., counting the power set P(x). Recom that $|P(x)| = 2^n$. On the other hand, a subjet of x can have $0, 1, 2, \dots$ or n elts. The number of such sets are exactly $\binom{n}{0}$, $\binom{n}{1}$, and there's no other possibility) $\binom{n}{2}$, ..., $\binom{n}{n-1}$, $\binom{n}{n}$. It follows that

 $2^{n} = \left(P(x) \right) = {n \choose 0} + \cdots + {n \choose n}$, so we are done. DPf 3: algebraically derive the fact $2^{n} = {n \choose n} + {n \choose n} + \cdots + {n \choose n}$ from the

so-called binomial theorem. -> tomorrow,