Math 2001. Lecture 4. Midtern 1: this Friday, June 10.

06.06.2002.

Last time: . Indexed sets

- Statements, truth values, and truth tables (including compound and conditional statements)
- eg. To prove $p \Rightarrow q_g$, assume p and deduce q_g .

Today: logical equivalence

. open statements and quantifiers

1. Logical equivalences

We say two statements are (logically) equivalent if they always have the same truth value (no matter that the touth Jalues of their component statements are).

Non-example:
$$(P \Rightarrow Q)$$
 vs $(Q \Rightarrow P)$ (convenes of each other)

1004-exemple	: ((02 -		converses of second	04121
	P	Q	P>Q	G =) P		
\	T	ī	7	T		
=>Q) is ot equiv.	EST	F	F	(F) -	Vacuously true: X=> y is true if	C
	F	T		T	X=> Y is true if	× 17 false
b (Q=7P)	F	F	T	(7)		

"POQ" is logically equiv. to (PNQ)V((~P) N(Q)) same in all rows,

so X and J are equivalent.

Example. $P \Rightarrow Q$ is equivalent to $^{''} \sim Q \Rightarrow \sim P$ $^{''} \times$ $^{'} \times$ $^{''} \times$ $^{'$

Later: we may prove a conditural statement by proving its contrapositive by the above equivalence.

þ	Q	P => @	~ Q	~}	16 >> ~P
T	7	T	F	F	T
T	F	C	T	F	F
F	T	7	F	T	T
F	F	T	T	T	T

Exercise: "PVQ" is equivalent to "(~P=)Q) ~ (~Q=)P)".

Exercise, (DeMorgan's Caus) Let P. a be statements. Then

 $(i) \sim (P \wedge Q) = (\sim P) \vee (\sim Q)$ = : equivalent (ii) $\sim (p \lor a) = (\sim p) \land (\sim a)$.

(inpare 11) and (ii) with DeMogan's Laws for Sets (i) AOB = AUB

(i)' $A \cup B = \widetilde{A} \cap \widehat{B}$.

Rock: We can prove the sex version (i), (ii) of DeMorgan's Laws from the logar version (i). (ii) easier: Imagine a universe U and suppose $A \subseteq U, B \subseteq U$. For all $x \in U$, let f be the statement " $x \in A$ " and Q the Statement "x \(\text{B'}'. Then \(\text{PAQ} = "\(\times \) \(\text{A} \text{B'} \) by the def of Set intersections and PVQ = "x < AUB" by the def of unions. Now, by (i), for all xEU we have ~ (PAQ) = (~p) V (G), $x \notin A \land B = (x \notin A) \circ (x \notin I3)$ Ex. Prove that "XEANS" = " XEA V XEB" (ii) => (ii)'.

[L. forlows -that $\chi_{G} \overline{Ang} = \chi_{G} \overline{A} \cup \overline{G},$ $\overline{Ang} = \overline{A} \cup \overline{G}, i.e. (i) holds.$

2. Open sentences and quantifiers

E.g. "x is an odd integer" is not a statement: We can only judge its truth value after x is made more specific.

We can such sentences open Statements.

We need quantifiers to make it a statement.

There are two man quantifiers in math:

. the existential quantifier "for some", withen I.

IX6IR st. P(x). Eg. For some XEIR, X is an odd integer. - True sktemat.

IX6IR st. P(x). = IX6IR such that X is an odd integer:

the universal quartifier for all ', (s.t.) written " \".

YXEIR, P(x). Left. YXEIR/For all XEIR, X is an odd int. -> statement.

Rnk: Note that given a universe U and an open sentence P(x), the statement "YxeU, P(x)" is equivalent to "xeU=> p(x)". · Make sure you use quantifiers when necessary! Avoid "any " and use " every leach " or "some" to avoid ambiguity when ambiguity is possible. Examples. Write the following statements in English. Then determine if they are true or false. $\exists x \in \mathbb{R}, x^2 > 0$. T: e.g. x = 1 is such anFor some $x \in \mathbb{R}$, we have x^2 is positive accomple. 11). JxEIR, x270. There exists some real number whose square is positive.

12) \frac{1}{2} \text{x} \text{E} \text{R}, \quad \chi^2 > 0_ For every lall real number X, we have $x^2 > 0$. Every real number squares to a positive number. False: 20=0 gives a courter example. (3) $\exists a \in (R \text{ s.t. } \forall x \in R, ax = X.$ There is a real number a st. ax eguals x for every real number X. True: 2 il such a number. (4) In & Z, In & Z st. m = n+5.

True, (whimately) sine the sum of two
int. is an put. False, since, for example, 1+572+5. (5)] m = 2 st. V n = 2, m = n+5, ->

· We can pure existential class = 1x(eU) = producing an Note: example but can't do the same for unversal claims Yx4. V. P(X). (eg. for x=1, we do have x2 >0, but this does note \frac{1}{2} \times (R, x^2 > 0.) · On the other hand, we can disprese a universal claim fx & U.Plx) by finding a counter-example, i.e., finding one Xt U s.t. P(x) fails.

(e.g. we found x=0 in (2)). · To prove a universal claim & x & U, p(=), we often prove it as the conditional statement $x \in U \Rightarrow p(x)$, ie - we assume

x is a general element in U and establish Plx),