06.03.2022.

Last time: . set operations: unions, intersections, difference, complements
not commutative

$$A-B \neq B-A$$
.
· Venn diagrams: Visualizing set interactions and operations
· Proofs of set equalities, e.g. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
DeMorgan's Laws $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Note:

Motivation, Sometimes ve deal with a large collection of sets
interacting in some way all at once. We need definition notation
Eq. Given a collection of sets Ar, Ar, -..., Ag, Aro, -...
We may write
$$\bigcup_{i=1}^{6} A_{i}$$
 as a shorthand for the union
 $\lim_{i \to i} \lim_{i \to i} \frac{1}{1} \lim_{i \to i} \lim_{i \to i} \lim_{i \to i} \frac{1}{1} \lim_{i \to i} \lim_{i \to i} \lim_{i \to i} \frac{1}{1} \lim_{i \to i} \lim_{$

The indices form a set themselves.

2. Statements (§ 2.1)

3. New statements from old = and, or, not

We often combine statements internore complex ones. We are interested in how the validity of the simple Statement affect the validity of the new statement. Notation: "T" true, "F" false . We'll often denote statements by letters such as P, a, R, ... · We write "N" for "and", "V" for "or", and "" for not". $(f) \sim (2EZ)' = 2EZ \rightarrow false$ -> false (since 267) (24Z)∧(3€Z)

Truth tables: We often use truth tables to indicate how the
bruth value / value of a complex statement depends on
those of its components
"and"/A: P Q PAQ "or"/V. P Q PUE
T T T T T T T T
T F F F T T T
F T F F F T T
F F F F F F F F
"nut"/~ P
$$\sim P$$

T F T
F T F F F F F F
T F F F F F F
T F F F F F F

More interestingly, we can deduce the truth Jahre of more complex
statements once we know the truth values of its
component statements
Eq. Suppose we have
$$\frac{P \ Q \ R \ S \ O}{T \ F \ T \ F \ F}$$
.
Then $P \lor Q \lor (R \land (s \lor ho)))$ is T .
T

4. Ner statements from eld: conditional statement

By a conditional statement we mean a statement that can be made
in the form "if P, then Q" where P.Q are thenselves statement.
Running example = if
$$\chi_{ij}$$
 an integer divisible by 6, then χ_{ij} an even int.
Note: A and itsue of the second of the be stated in Various ways:
(P44) · if P, then Q; · P guavartees Q
Note in fr (· Q if P.
· G whenever P (Whenever P. Q) Q is necessary (a necessary and thin
 $P = Q$
· Q, provided that P holds. P only f Q.
· P implies Q.

If of our enemple statement:
Suppose
$$\chi$$
 is an integer divisible by b.
Then $\chi = 6 \cdot n$ for some integer χ .
Thus, we have $\chi = (2 \cdot 3) \cdot n = 2 \cdot (3n)$ where $\overline{\partial n \in \mathbb{Z}}$ since $n \in \mathbb{Z}$.
It follows that χ is an even int.

Remarks: (1), We define the contense of a conditional statement "If
$$p$$
 then a
to be the statement "If Q then p ".
 $G \Rightarrow p$
Note that $p \Rightarrow Q$ and $Q \Rightarrow p$ " generally have different truth values.
Eq. $x \ van not divide by 6 \Rightarrow x \ van even not : True
 $x \ van even \ value \ value$$