Math zool. Lecture 22.

06.30.2022.

1. Problems on functions
1. Problems on functions
1. Prove that (1) if
$$f: A \to B$$
 and $g: B \to C$ are both inj, then
(then 122) the Composition $g \circ f \xrightarrow{(A \to C)} also inj$.
(2) The above also holds if we replace both "inj." by "surj".
Pf of (1): (Result that a function $Q: X \to Y$ is inj if
 $Q(X_i) = Q(X_i) \implies X_i = X_2$ $\forall X_i, X_i \in X$.)
Let $a_i, a_i \in A$. Suppose fig are inj. and suppose that
 $(g \circ f)(a_i) = (g \circ f)(a_i 7)$.
By def. if compositions. this implies that $g(f(a_i)) = g(f(c_2))$.
Since g is mj, it follows that $f(a_i) = f(a_i)$. Since $f:(inj, if further follows
that $a_i = a_2$. Therefore fog is inj.$

2. Are the fully was functions in
$$j ? \dots sur j ?$$

(1) $f: \mathbb{Z} \to \mathbb{Z}$, $f(n) = 2n+1$ $\forall n \in \mathbb{Z}$.
in $j ?$ $f(n) = f(n_2)$ $\xrightarrow{?}$ $n_1 = n_2$
 $2n_1 + 1 = 2n_2 + 1$ $\overline{7en_1 by beize algebra}$
 $sur j ?$ $\overline{in}(f) = f(h) : n \in \mathbb{Z} f = f(2n+1) : n \in \mathbb{Z} f \xrightarrow{?} \mathbb{Z}$
 $No. such sections are cut odd.$
(2) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $f(m,n) = Sm + 5n$ $\forall n, n \in \mathbb{Z}$.
 $\overline{in j}$? $Sm_1 + 5n_1 = Sm_2 + 5n_2$ $\xrightarrow{?} (m_1, n_2) = (m_2, n_2)$
 $\forall n_1, n_2, n_2 + n \in \mathbb{Z}$
 $No. for example. we have $(5, 0) \neq (0, 8)$ but
 $f(5, 0) = f(0, 8) = 40$.$

Surj?
$$f(m, n) = gm + 5n$$
.
 $V (mf = \{ gm + 5n | m \cdot n \in \mathbb{Z} \} \stackrel{?}{=} \mathbb{Z}.$
Yes: since $gcd(8.5) = 1$, we can write 1 as $gm + 5n$
for some $n, n \in \mathbb{Z}$. Indeed, we have $1 = g \cdot 2 + 5 \cdot (-3)$.
Thus, given any $b \in \mathbb{Z}$, we have
 $b = 1 \cdot k = (g \cdot 2 - 5 \cdot (-3)) \cdot k$
 $= g \cdot (2k) + 5 \cdot (-3k)$
where $2k$, $-3k \in \mathbb{Z}$. (It follows that $\mathbb{Z} = Jm(f)$,
 $s \circ f$ is surj.

3. Consider functions f: {A.B, C.D, E, F, G} -> {1,2}. (1) How many such functions are there? Use the subtraction principle: (7) - inj? surj? -> # surj. functions (7) - - . - - . = # all functions, - # non-sig furctions, = 2⁷-2 all ortputs = 1 or all outputs = 2. bij ? Soln: 1) To specify such a function is to assign an output equal to either ! or 2 (2 choires) to each of the server etts in the domain. The assignments can be made independently, so there are 2' possible function, in total. (2) None, since [A, B, C. D, E. F. G] = [f1, 2] . None, since none are inj by (3).

D