1. Partitions from equivalence rels. Det: A partition of a set A is a set/collection of nonempty subjets of A st. (1) no two of them intersect nontrivially, i.e., she sets are pairwise disjoint ; and (2) their union equals A. Eq. Testerday we saw that the equivalence classes of the red. $\overrightarrow{(1)} = \overrightarrow{(1)} = \overrightarrow{(2)} = A_{2} = \{-1, 1, 3, 2, 4\}$ are $\overrightarrow{(1)} = \overrightarrow{(1)} = \overrightarrow{(1)} = \overrightarrow{(1)} = \{-1, 1, 3\}$ $\overrightarrow{(1)} = \overrightarrow{(1)} = \overrightarrow{(1)} = [3] = \{-1, 1, 3\}$ $\overrightarrow{(1)} = \overrightarrow{(1)} = [3] = \{-1, 1, 3\}$ $\overrightarrow{(1)} = \overrightarrow{(1)} = [3] = \{-1, 1, 3\}$ $\overrightarrow{(1)} = \overrightarrow{(1)} = [3] = \{-1, 1, 3\}$ [2]=[4] = {2.4}. These two classes [-1]=[1]=[3] and [2]=[4] form a partitum of A. partition (verb)

Two theorems :

(c) (c) Suppose aRb. We need to show that [a] = [b]. We do so by showing that [a] S [b] and (b] S [a].

2. Functions

Det: (Def (2.1) A function from a set A to a set B is a rule
that assigns one (unique) elt in B to each elt in A.
if an elt a 6A is assigned the output bt B, we write
$$f(a)=b$$
.
Def: For a function $f: A \rightarrow B$, we cal A the domain of f and B
the codonain of f. The range or image of f is
the set im(f) = $\{f(a) : a \in A\}$. $\in B$
Note: In general in(f) may not equal the embire to domain - i.e. we may have
im(f) = $\{x^2 : x \in R\} = R_{zo}$ for the codomain R.

Det (Det 123) Two functions
$$f: A \rightarrow B$$
 and $f: (-\pi)$ are equal
if $A = C$ and $f(x) = g(x)$ $\forall x \in A = C$.
Eq. ($f: (R \rightarrow (R, f(\pi) = x^2) \forall x \in R)$) = ($g: (R \rightarrow (R_{ZO}, g(\pi) = x^2) \forall x \in R)$)
Det (Det 12.5) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
Then the composition of f and g is the function $g \circ f: A \rightarrow C$
given by ($g \circ f$) (α) = $g(f(\alpha))$ $\forall \alpha \in A$.
Eq. ($f f, g: (R \rightarrow (R are given by f(x) = x + c))$ and $f(x) = x^2 \forall x \in (R \cdot (R + (G \cap (G \cap (X)))))$
and ($f \circ g$) (x) = $f((x^2) = x^2 + 1)$. Note: $f \circ g \neq S \circ f$ in general,
even if both for $g \circ f \circ g \neq G \circ f$ in general,
even if both for $g \circ f \circ g \neq G \circ f$ in general,

The (There 12.5) Composition of function is associative, that is,
If
$$f: A \rightarrow B$$
, $g: B \rightarrow c$, $h: (\rightarrow D \text{ are functions} - then$
 $(h \circ g) \circ f = h \circ (g \circ f)$.
Pf: Both $(h \circ g) \circ f$ and $h \circ (g \circ f)$ have domain A , is it suffres
to show that $[(h \circ g) \circ f](a) \stackrel{\text{def}}{=} [h \circ (g \circ f)](a) \forall a \circ A$. Let $a \circ A$. Then
 $D = c = B = A$
 $(f \circ g) \circ f](a) = h \circ g(f(a)) = h (g(f(a)))$
 $(h \circ g) \circ f](a) = h \circ g(f(a)) = h (g(f(a)))$
 $(h \circ g) \circ f](a) = h (g \circ f (a)) = h (g(f(a)))$
 $(h \circ g) \circ f](a) = h (g \circ f (a)) = h (g(f(a)))$
 $(h \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g(f(a)))$
 $(f \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g(f(a)))$
 $(f \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g(f(a)))$
 $(f \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g \circ f (a))$
 $(f \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g \circ f (a))$
 $(f \circ g) \circ f](a) = h (g \circ f (a)) = h \circ (g \circ f (a))$

Def. (Def 12.4) A function
$$f: A \to B$$
 is (attrapositives
1) injective (or one-to-one) if $\forall a.a' \in A$, we have $f(a) = f(a') = a = a^{1}$.
equivalent, if $\forall a, s'(c, A)$, if $a \neq a'$ then $f(a) \neq f(a)$.
2) surjective (or $a = b$) if $\forall b \in B$, $\exists a \in A$ ist. $f(a) = b$,
equivalently, if $B = in (f)$.
(7) bijective if it is both injective and surjective.
(n pictures:
 $a = b = a^{2} + b^{2} + b^{2$

Examples:

is not injective and is son.
is not injective and is son.
since
$$f(z) = f(z)$$

or. by the pizeonhole principle!
Indeed, $\overline{rf} |A| = m$, $|B| = n$, $m, n < \infty$ and $m > n$, then no function
from A to B is inj.

$$f: A \rightarrow B$$
is inj but not surj.

$$[A] = m, |B| = n. m, n < \infty$$

$$I = 1$$

$$A + B$$

$$Can be surj.$$

$$f: A \rightarrow B$$

$$\int S = 1$$

$$F(1) = f(2)$$

$$f = B \setminus in(f).$$

$$f: (R \setminus \{0\} \longrightarrow (R \setminus w) = \frac{1}{x} +) \quad \forall x \in (R \setminus \{0\}).$$

$$\lim_{x \to \infty} \frac{1}{x} : No. \text{ since } [ER \text{ but } | \neq (\frac{1}{x}) +] \quad \text{for } any = E[R \setminus \{0\}].$$

$$\lim_{x \to \infty} \frac{1}{x} : \frac{1}{x} + 1 = \frac{1}{x_{n}} + 1 \implies \frac{1}{x_{1}} = \frac{1}{x_{n}} \implies x_{1} = x_{n} \quad \forall x_{n} x_{n}$$

$$\lim_{x \to \infty} \frac{1}{x_{1}} : \frac{1}{x_{n}} = \frac{1}{x_{n}} \quad \forall x_{n} \in [R \setminus \{0\}].$$