Def: A relation (formally) on c set A is c subjet
$$R \leq A \times A$$
.
We often abbreviate the statement $(x, y) \in R$ as $x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (x, y) $\notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (e.g. $(3, 18) \in R \iff x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $x R y$.
 $(:dentify)$ (for a statement $(x, y) \notin R \implies bbrevieted$ $(x, y) \notin B \implies bbrevieted$ $(x, y) \notin B \implies bbre$

A guruk chart: < < = | t N Y Y N N Y Y N Relation on A:= Z N Reflexive ? NNTN atb=>bfa? Y Symmetric ? atb, bf $c \Rightarrow a f c ?$ $\gamma = N$ Y Y Y transitive? N Example: lonsider the following relation R on the set $A = \{a, b, c, d\}$. $R = \{(b, b), (b, c), (c, b), (c, c), (d, d), (b, d), (d, b),$ (c,d), (d,c). SR reflexive? N°, since aRa. boothore of c. Is R symm? Yes, since NRg => yRx by inspection. Yes, by careful, exhaustive checks. . Is R transitive?

2. Equivalence relations

Example: Consider the rel. R on
$$A = \{-1, 1, 3, 2, 4\}$$
 given by
the graph $(-) = ($

$$(-\text{transitivity}) = \overline{C} \cdot X.$$
By the above, it follows that R is an equiv. rel. 0
What are the equivalence classes ?
eq. $n=2$. $\left[-..., 4, -2, 0, 2, 4, 6, ...\right] = [0]$
 $E(1) = \{2, ..., -3, -1, (1, 3, 5, ...)\}$
 $n=3$. $[0] = \{1, ..., 6, -3, 0, 3, ...\}$
 $E(1) = \{-..., 5, -2, 1, 4, 7, 10, ...\}$
 $E(1) = \{1, ..., 4, -1, 2, 5, 8,\}$
there are n equivalence classes, the usual iresidue classes.

Example. (P. 213) Let
$$A = \left\{ \frac{m}{n} \middle| m, n \in \mathbb{Z}, n \neq 0 \right\}$$
. Consider the rel. R
(fractions) on A defined by " $\frac{1}{6}R\frac{1}{5}$ if $ad = bc$ " $4\frac{6}{5}, \frac{1}{4}cA$
Prove that R is an equivalence rel on A.
Example: $\frac{2}{5}R\frac{6}{15}$ since $2 - 15 = 5.6$, $\frac{1}{5}R\frac{2}{21}$ since $\left[-21 = 3.7 \right]$
 $\frac{2}{5}R\frac{9}{17}$ since $0 \cdot 17 = 0.4$.
(n fact, R is just "being equal of rational numbers".
(and hence the equivalence classes of A are just
the rotocal numbers.)

.

P