Math 200]. Lecture 16.

06. 22. 2022.

Last time: existence proofs

— constructive or nonconstructive

Today: - proofs involving sets

— set containment (E) or equality (=)

Recall: . If A B are sets. when A EB iff every elt in A is in B.

if x & A then x & B (for x & U)

· Two sets A.B are equal it A SB and B SA. the universe

1. Set containments and equalities

Eq. (8.5) Prove that $\{x \in \mathbb{Z} \mid 18 \mid x\} \subseteq \{x \in \mathbb{Z} \mid 6 \mid x\}$. Pf: Let $y \in \{x \in \mathbb{Z} \mid 18 \mid x\}$. Then $18 \mid y$, so $y = 18 \mid x$ for some $k \in \mathbb{Z}$.

Thus, y=18k=(6.3).k=6. (3k) where 3k = 7.

So 6/y, hence $y \in \{x \in \mathcal{Z} | 6/x\}$, and we are done.

E.g. (8.7) Show that $\{(x_0,y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{6}\}$ $\{(x_0,y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{6}\}$.

Pf: Let $(x,y) \in LHS$. Then $x \equiv y' \pmod{6}$, so $6 \mid x-y$. Since $3 \mid b$, it follows that $3 \mid x-y$, so $x \equiv y \pmod{3}$. It follows that $(x,y) \in k+S$, so $LHS \subseteq RHS$. (8.8) Prove that A.B are sety_ then PIA) UP(R) & P(AUB).

Pf: Take an (arbitrary) elt / set X & P(A) UP(B).

Then $X \in P(B)$ or $X \in P(B)$.

. (f X & P(A), then X S A. Since X SA and A S A UB, we have X S A UB.

· Similarly, if $X \in P(B)$ than we also have $X \in AUB$.

So in all cases we have XEAVB, so XEP(AUB).

Therefore P(A) UP(B) & P(AUB).

(8.9) Let A.B be sets. If $P(A) \subseteq P(B)$, then $A \subseteq B$.

Pf: Suppose P(A) S P(B). We will show A S B by showing that every elt x A is also an elt in B.

Let $x \in A$. Then $\{x_0\} \subseteq A$, hence $\{x_0\} \in P(A)$. Since $P(A) \subseteq P(B)$ by assumption, it follows that $\{x_0\} \in P(B)$.

Thus, we have {x} & B. It fullows that x & B.

It follows that $A \leq B$, so we are done. \square

Prove that $\{n \in \mathbb{Z} : 35 \mid n\} = \{n \in \mathbb{Z} : 5 \mid n\} \cap \{n \in \mathbb{Z} : 7 \mid n\}.$ Pf: Let A and B denote the sets on the left and nother equality, (8.10) Prove that respectively. (ASB) Suppose REA. Then 35/k · Since 5 | 35 and 35 | k, we have 5 | n , so k & { n & Z : 5 | n]. · Similarly. Since 7/35, we have --- - k& {n& Z : 7/n}. It follows that REB. hera A = B. (BSA): Suppose & B. Then 5 | k and 7 | k. It follows that in the unique prime decomp. of k we have k= 5.7. ____ = 35. ____, (other primes So 35 | R. Thus, we have $R \in A$, so $B \subseteq A$. We conclude that A = B, as desired. \Box

(8-11) Suppose AB, c are sets, with CF . Prive that if AxL=BxC, they would be of then A = B. (and equal) if C=4. Pf: Suppose AxC = BxC. We will prove A=B by priving ASB and BSA. (ASB) Let AEA. Since $C \neq \emptyset$, we may pike an elt $C \in C$. Then $(a.c) \in A \times C$. Since $A \times C = B \times C$, it follows that $(a.c) \in B \times C$. It further fullows that $C \in B$. Therefore $A \subseteq B$. (BEA) Similarly, we have BEA. It follows that A=B.

(8.13.) Let A,B,C be sets. Show that
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

Pfz: Note that LHS =
$$\{(x,y) \mid x \in A \text{ and } y \in B \cap C\}$$

$$= \left\{ (x_i y) \mid x \in A \text{ and } y \in B \text{ and } y \in C \right\}$$

$$= \left\{ (x,y) \middle| (x \in A \text{ and } y \in B) \text{ and } (x \in A \text{ and } y \in C) \right\}$$

$$= \left\{ (x,y) \middle| x \in A \text{ and } y \in B \right\} \left(\left\{ (x,y) \middle| x \in A \text{ and } y \in C \right\}$$

= (A KB) N (A KC) = RHS.

2. Disprosts / True l False problems

To dispose a universal statement " $\forall x \in \mathcal{S}, p(x)$, it suffices to find one counterexample, i.e., one example st. p(x) does not hold.

E.g. Statement: Every prime number : s oud.

The statement is false because 2 is a counterexample: it is prime but not odd.

. Statement: If $n \in \mathbb{Z}$ then $n^2 - n + 1$ is prime. It's false shu for n = 1 $\in \mathbb{Z}$ we have $n^2 - n + 1$ $= (1^2 - 1) + 1$ $= (1^2$, which is not prime. Analysis: As before, we study (x) Na Venn diagrams first.

A 1 0 5 c

Bac: 3,6

A-B: 1,4

A-C: 1,2,4.

A-C: 1,2

(x) should fail whenever there is an est in region 2 or region 4.

Sum: The statement 75 false. Here's one counter-example: let $A = \{1, 2, 3, 4\}$. $B = \{2, 3, 6, 7\}$ and $C = \{3, 4, 5, 6\}$. Then $A - (BAC) = \{1, 2, 3, 4\} - \{3, 6\} = \{1, 2, 4\}$

While $(A-B) \wedge (A-c) = \{ (,4) \wedge \{ (,2) = \{ (,4) \} \wedge \{ (,2) = \{ (,2) = \{ (,4) \} \wedge \{ (,2) = \{ (,$

To disprove an existential claim "] x (U, P(x)", we need to show that \$(x) must fail for all XEU (so it's not enough to find one example x for which p(x) fails). E.g. There is a real number XCR S.t. X4CXCX1. The statement is table, since there is no real number $X \in \mathbb{R}[W]$.

We'll prove this by Contradiction. $X^4 < X < X^2$: Let $X \in \mathbb{R}[X]$. Suppose $X^4 < X$, then since $X^4 \ge 0$, we much have X > 0.

 $\frac{x^4 < x < x^2}{}$: Let $x \in \mathbb{R}$. Suppose $x^4 < x$, then since $x^4 \ge 0$, we must have Now, since $x < x^2$ and x > 0, we have 1/x > 0 and $x < x^2$. So

 $\times \frac{1}{x} < x^2 \cdot \frac{1}{x}$, i.e., 1 < x.

But then $x^3 > 1$, hence $x^4 = x \cdot x^3 > x$, a contration. It follows that we can't have both $x^4 < x$ and $x < x^2$.