Last time: Proofs by contrapositives or contradictions

· Proving equivalences

- Inggestions for mathematical Witing.

Today: Existence proofs

Constructive or non constructive

· Second worksheet on proofs

Point: Construction and verification of a valid example is sufficient for proving an existence claim. 1. Existence proofs Éasy examples.

Prop: There exists an even prime number.

Pf: The number 2 is such an example

Prop: There exists an integer that can be written as a sum of two perfect cubes in two different ways.

Pf: Consider the number 1729. We have one can find $(-1729 = 10^3 + 9^3 = 1^3 + 12^3)$ such a number so 1729 suffices as an example. w) some program

The point on the previous page should be contrasted with the following: to prove an object with a certain property closs (a kind of object)

not exist, it is not sufficient to give only one particular instance of such an object that closest have that properties.

Rnk:

Show that there is n't any real number $x \in \mathbb{R}$ with $\chi^4 < \chi < \chi^2$. (i.e., disprive "I $\chi \in \mathbb{R}$ is $\chi^4 < \chi < \chi^2$ ")

The number $\chi = 2$ fails (x), but this failure close isn't sufficient as a proof of the unterlined statement.

to find k, l in general A horder existence proof: look up "Enchidean algorithm". Prop: Let a.b & Zero. Then I k, l & Zer. gcd (a.b) = ka+lb. Eq. a=10, b=12 => gcd(10,12)=2. 2 = (-1) · 10 + | · 12 a = 3, $b = 5 \implies g(d(3,5) = 1)$. $1 = (-3) \cdot 3 + 2 \cdot 5$ of. Consider the set D = { xa+yb : x,y ∈ Z}, and let d be the smallest positive integer in D. We claim that d = g(d(a,b)), so that $d = k - a + l \cdot b$ for some $k, l \in \mathcal{I}$, as desired, and we'd be done. To prove the claim that d = ged (a.b), we first prove that d|a and d|b. To prove d|a, bet re{0,1.-.., d1} be the remainder obtained when we divide a by d. s. a = dq +r for some q = Z.

We have $\Gamma = \alpha - dg$. But $d \in D$ so d = 20 a + y b for some $x, y \in \mathcal{Z}$. S. $r = a - dq = a - (xa + yb)q = (1-xq)a + (-yq)b \in D$. Since dED, 0 ≤ r < d, and d is the smallest puritive int in D, By (1) and (2), we conclude it follows that r=0, so da. that d= g(d(a,b), s. A similar argument shows that d | b. we are done. a Now, to show d= gcd (a,b). We note: (1) d{gcdlq,b) since we just should that d is a common divisor of a end b. we have gcd (a,b) | a, gcd (a,b) | b, s. ·2). g(d (a.b) ≤ d : Sch (a.b) (d snee d is a Z-ln. aub. of a and b.

Take away from the proof: The gcd. of two positive integers equals the smallest positive integral lin. comb. of the two integers. $g(d(a,b)) = \min \left(\left\{ \chi_a + y_b \middle| \chi_b \neq Z \right\} \right) \cap Z_{>0}$

Some related problems:

 $\frac{7-31}{n}$. If $n \in \mathbb{Z}$, then g(d(n, n+1) = 1).

If: We can write I as a Z-lin. comb of n and n=1:

and I is the smallest positive int, so if must be the smallest positive be comb. of new and n. s. if must be the god of n and nel, ier, gcd(n,ntl)=1.

7. 32. (f n (Z. then gcd (n, n+2) ({ 1, 2}). Pf: Let $n \in \mathbb{Z}$. We note that $2 = | \cdot (n+2) + (-1) \cdot n$, i.e., the number 2 is a pos. E-ln. conb. of n+2 and n, so $g(d(n, n+2) \in 2$. It follows that gcd (n,n+2) & {1,2}. An alternative proof: It suffices to show that if d is any common divisor of n and n+2, then $d \in \mathbb{Z}$. Suppose d is such a common divisor, then since $d \mid n+2$ and $d \mid n$ we have $d \mid (n+2) - n = 2$, so $d \in 2$, as desired. D

2. Constructive VI. non-constructive proofs

Record: (xa) b = x(cb)

We'll prove the following prop. In two ways.

Prop: There exist irrational numbers X,y s-t. XY is rational.

Pf1: (constructive) Take $\chi=\sqrt{z}$ and $y=\log_z 9$. We know that χ is irrational, and we have

$$\chi^{y} = \int_{\Sigma}^{\log_{2} g} = \int_{\Sigma}^{\log_{2} g^{2}} = \int_{\Sigma}^{2 \log_{2} g} = \int_{\Sigma}^{2 \log_{2} g} = \int_{\Sigma}^{2} \log_{2} g = \int_{\Sigma}^{2} \log_{2}$$

so it remains to check that y is irrational.

We prove $y \notin \mathbb{Q}$ by contradiction: suppose otherwise, ie, suppose $y \in \mathbb{Q}$, then $\log_2 9 = \frac{m}{n}$ for some $m, n \in \mathbb{Z}_{70}$. Thus, we have

$$2^{m/n} = 9$$
, so $9^n = (2^{m/n})^n = 2^m$. This is impossible

Since 9^n is odd while 2^m is even, so y must be irrational,

and we are done. 1

If $2: (non-constructive)$ Consider $x = \sqrt{2}$, $y = \sqrt{2}$, so that $x^y = \sqrt{2}$ and

 $x_i y \notin \mathbb{Q}$.

If $\sqrt{2}^2 = \chi^y \in \mathbb{G}$, then we are done,

If $\sqrt{2}^{1/2} = \chi^y \in \mathbb{G}$, then we are done,

and we'd have $(\chi')^y' = (\sqrt{2}^{3/2})^{5/2} = \sqrt{2}^2 = 2 \in \mathbb{Q}$,

so again we are done. 1