Examples :

Suppose
$$7x+9$$
 is even.
Note that $x = (7x+9) - 6x - 9$. (X)
Since 6 is even, $-6x$ is even.

2. Let
$$a,b\in\mathbb{Z}$$
 and $n\in\mathbb{Z}_{>0}$. If $(2a \neq 12b \pmod{n})$, then $n\neq 12$.
P
G.
Pf: We prove the contrapositive, i.e., that
if $n \mid 12$ then $12a \equiv 12b \pmod{n}$.
Suppose $n \mid 12$. Then $12 = kn \pmod{n}$.
 $12a - 12b = (2(a+b)) = kn(a-b) = n \cdot (a+b)k$
It follows that $n \mid 12a - 12b$.
So $|2a \equiv 12b \pmod{n}$, and we are done.

Examples

1. (irrationality of
$$\sqrt{2}$$
). Prop: The real number $\sqrt{2}$ is not rational,
i.e., We cannot write $\sqrt{2} = \frac{m}{n}$ for any integers m, n with $n \neq 0$.
If: We prove the claim by contradiction: suppose otherwise, i.e., suppose, for
the sake of a contradiction, that $\sqrt{2} = \frac{m}{n}$ for some $m, n \in \mathbb{Z}$ of $n \neq 0$.
Then we may pick $m, n \in \mathbb{Z}$ sit. $\sqrt{2} = \frac{m^2}{n^2}$ and $\gcd(m, n) = 1$.
Squaring both sides of ∞^2 , we get $2 = \frac{m^2}{n^2}$, $s = \frac{m^2 - 2n^2}{n}$.
Thus, m^2 is even. It follows that m is even (otherwise m , hence m^2 , would be odd).
We can now elsume $m = 2k$ for some $k \in \mathbb{Z}$, and we have $2n^2 = m^2 = 6k)^2 = qk^2$.
It follows that $n^2 = 2k^2$.

.

It further follows that
$$n^2$$
 is even, and hence n is even.
But then since both m, n are even, $g(d(m, n) \ge 2 > 1)$,
Contradicting our assumption that $g(d(m, n) = 1)$.
It follows that J_2 must be irrational. \Box
 $EX:$ Prove that J_3 is irrational.

2. (infinitude of primes) Prop: There are infinitely many prime integers.
Pf: Suppose otherwise, i.e., Suppose that doere are only finitely many
primes. Then we can list them as
$$p_1, p_2, \dots, p_k$$
 for some $kt \neq 1$
in increasing order (so $p_1=2$, $p_2=3$, $p_3=5$, ...).
Consider the number $N := p_1 p_2 \dots p_k + 1$. The number N must have
a prime factor, which has to be p_i for some $l \in i \in k$.
Thus, we have $N = Cp_i$ for some $C \in \mathcal{F}$.
We now have $N = Cp_i$ for some $C \in \mathcal{F}$.
We now have $p_i p_2 \dots p_k + 1 = Cp_i$, so $l = Cp_i - p_i p_2 \dots p_k$
Since $p_i | Cp_i$ and $p_i | P_i p_2 \dots P_k$, we have $p_i | 2$.
This is impossible, so there must be infinitely many primes.

Rik: To prove a conditional statement
$$P \Rightarrow Q$$
 by its contraptione
is to assume ~Ga (i.e., assume the opposite of the desired and using
Goal derive ~P (i.e., derive a contractivition to the assumption),
So such a proof is a Special case of proof by contradiction.
An (easy) example: Let a6 Z. If a^3 is even, then a is even.
 F : Suppose otherwise, i.e., a is not even. Then a is odd,
so $a^3 = a \cdot c \cdot a$ is odd, so a^3 cannot be even.
It follows that if a^3 is even than a is even.

Suppose x is not even. Then x is odd, so
$$3x$$
 is odd,
hence $5x+s$ is even and not odd.
By (1) and (2), we conclude that x is even iff $3x+s$ is odd.
(b) Equivalences of more than two statements / conditions.
("The following are equivalent ... / TFAE ...)
Note: If $P \Rightarrow Q$ and $Q \Rightarrow R$ then $P \Rightarrow R$.
Thus, to prove $(Q \otimes G) \otimes (C)$ if suffices to prove that
 $(G) \Rightarrow (G)$

4. Writing advices from the textbook 1. Begin each sentence with a word, not a Math symbol. "A is a subjet of B! X The set A is a subjet of B. 2. End each sentence with a period, even if the sentence ends with a symbol on expression. The binomial then states that $(x+y)^n = \sum_{k=1}^{n} {\binom{n}{k} \times \binom{n-k}{k}} \times$ - - - - , yh O ''

3. Separate math symbols / expressions with words.
"As
$$x^2 - 1 = 0$$
, $\chi = 0$ or $\chi = -1$."
 \rightarrow "As $\chi^2 - 1 = 0$, we have $\chi = 0$ or $\chi = -1$."

9. Awil "it / this / there " when there might be ambiguity.

10/11. Use conjunctions in suitable places. (sma, because herce, tharfore, thus, ---) 12. Be clear / ansignities !