Math 2001. Lecture 11.

06. (5. 2022.

Last time = · bars-and-stars problems · mublicet permutations (the word problem) eg. # spedngs of the letters in MISSISSIPPI $= \frac{11!}{4! 4! 2!}$. summary of counting problems and techniques Today : · the pigeonhole principle . the division principle

1. The pizenhole principle.

.

2. The division principle.

Def: For any real number
$$r$$
,
the floor of r , denoted by $\lfloor r \rfloor$, is the longest Not. k st. $k \leq r$.
 $eg. \lfloor 2 \rfloor = 2$, $\lfloor 2 \cdot l \rfloor = 2$, $\lfloor \overline{n} \rfloor = 3$, $\lfloor -2 \cdot l \rfloor = -3$.
The division the ceiling of r , denoted by $\lceil r \rceil$, is the smallest mt le. it. $k \geq r$.
principle $e_{2r} \lceil \overline{n} \rceil = 2$, $\lceil \overline{n} \rceil = 3$, $\lceil \overline{n} \rceil = 4$, $\lceil \overline{2} \cdot l \rceil = -2$
Prop. Place n objects into k boxes $(k, n \in \mathbb{Z}_{>0})$.
i) At least one of the boxes gets at least $\lceil \overline{n} \rceil$ objects.
2) - - - - - - - - - - gets at mast $\lfloor \frac{n}{k} \rfloor$ objects.
Eq. Place 13 objects with 3 boxes. Then $\{1\}$ some box must get at least 5 objects.

ef: We'll prove (1) and leave the similar proof st (2) as an exercise.
(1): To prove that some box must instain at lease
$$\begin{bmatrix} n \\ k \end{bmatrix}$$
 objects.
We will suppose otherwise and derive = Contraction (i.e., we show
that the opposite of the anisin cannot possibly happen):
Utherwise . every box contains at most $\begin{bmatrix} n \\ k \end{bmatrix} -1$ or jects, "pt by
(if the desired so the total number of object in the bores
had) is at most $\begin{bmatrix} n \\ k \end{bmatrix} -1$, is object.
Since $\begin{bmatrix} n \\ k \end{bmatrix} < \frac{n}{k} + \frac{1}{k}$, therefore it would follow that
 $N < (\begin{bmatrix} n \\ k \end{bmatrix})$, $k = n$, which is a contradiction, so we are done. □

Examples :

c) On the other hand, if we buy
$$49$$
 gunbally, then by the division
principle some color will contribute at least $\begin{bmatrix} 49\\4 \end{bmatrix} = 13$ balls,
so we will got the if 5 reward and rucke money.
 1
 $(5 - 49 \pm 0.05 = $2.55)$

3. More combinatorial relentities (to finish Ch. 3.)

(1).
$$\sum_{k=0}^{n} {\binom{n}{k}}^{2} = {\binom{2n}{n}}$$

$$P_{k=0}^{2} \left(\sum_{k=0}^{n} \right)^{2} = {\binom{2n}{n}}$$

$$P_{k=0}^{2} \left(\sum_{k=0}^{n} \sum_$$

Another approach: Take k objects from A and then
$$(n-k)$$
 objects from B, where $0 \in k \leq n$.

$$-) \sum_{k=0}^{\infty} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{\infty} \binom{n}{k} - \sum_{k=0}^{\infty} \binom{n}{k}^{2} ways to do so.$$

$$(t \text{ follows that } \sum_{k=0}^{\infty} \binom{n}{k}^{2} = \binom{2n}{n},$$

17).
$$\binom{2n}{2} = 2\binom{n}{2} \mp n^2$$
 Pf 1: Show adgebrainady that LHS=2n²-n = RHS. D
Pf 2: Consider pitcing z etts out of the union AUB where A= $\int R_{1...}$ and
and B= $\int b_{1,...,b_n}$ are sets with n elts each.
There are clearly $\binom{|A \cup B|}{2} = \binom{2n}{2}$ to do so.
On the other hand, we could pite those z etts in one of the following ways
(1) Pith there book from A. $\rightarrow \binom{n}{2}$ ways to do this
(2) $- - - \cdots$ B $\rightarrow \binom{n}{2}$ using the or other sphin)
(3) Pith one from A and the other from B (the only other sphin)
Lt follows that $\binom{2n}{2} = 2\binom{n}{2} \mp n^2$. Is