06.14. 2022.

$$\left[\begin{array}{c} \text{Last time} : & \text{The inclusion - exclusion principle} , |AUB] = |A| + |B| - |A \cap B| \\ |AUBUC| = |A| + |B| + |C| - |A \cap B| - |A \cap C| \\ - |B \cap C| + |A \cap B \cap C| \\ \end{array} \right].$$

1. Bars-and-star enercises. ->
$$\left(\begin{array}{c} \text{often fundated without} \\ \text{wing multiset opplaitly} \end{array} \right)$$

(a) $\#$ multisets of size 4 made from $\{a.b.c.d.e.f\} = \binom{(b-1)+4}{4} = \binom{9}{4}$
 $\times \times \times \times \times$
 $e.g.$ $a.b.b.e \longrightarrow [\times \times e] || \times |$
(b) $\#$ monneg. int. subms. $\# \times e.g. = 10 = \binom{(0+6-1)}{3-1} = \binom{12}{2}$
 $e.g. \times \times e.g. \times e.g. = 10 = \binom{(0+6-1)}{3-1} = \binom{12}{2}$
 $e.g. \times \times e.g. \times e.g. \times e.g. = 10 = \binom{(0+6-1)}{3-1} = \binom{12}{2}$
 $e.g. \times \times e.g. \times e.g.$

.

(f). What's the number of int. tuples
$$(U, x, y, \overline{z})$$
 s.e.
 $0 \in W \leq x \leq y \leq \overline{z} \leq 10$?
 $\left(\begin{array}{ccc} e.g. \\ (1, 2, 5, 6) \end{array} \rightarrow & \overline{x} \middle| x & \overline{x} & \overline{x} \middle| x & \overline{x} & \overline{x} \\ (3, 6, 8, 8) \leftarrow & \overline{x} \times \overline{x} \middle| x & \overline{x} & \overline{x} \\ (3, 6, 8, 8) \leftarrow & \overline{x} \times \overline{x} \middle| x & \overline{x} & \overline{x} \\ \end{array} \right)$
Soln: We note that such tuples are in bijection with bars-and-stors
(onfigurations containing 10 stars and 4 bars vith the encoding
a bars-and-stars diagram $\longrightarrow (x_1, x_2, x_3, x_4)$ where $x_i = \overline{4}$ stars
before the ith (leftmore) bars
H follows that the desired number of solutions is $\binom{10+4}{4} = \binom{14}{4}$.

2. Multiset permutations

$$\frac{Prop}{rop} : If A ij a multiset with N etts (with mult.) and its etts havemultiplicities p_1, p_2, \dots, p_k . Then the number of permutations of
the eth of A is $\frac{n!}{p_i! p_2! \cdots p_k!}$$$

3. Summary of types of counting problems / techniques
Let X be a set
$$\{x_i, x_2, ..., x_n\}$$
 or a multiplet $[x_{1i}x_{2i}, ..., x_n]$ of n edts.
We have bearned to count the following types of objects:
11) Set permutation: X is a set, we take k edts over of X and love them up.
I find lineups = $P(n, k) = n(n-1)...(n+k+1)$.
In particular, if $k=n$, then 4 such lineups = $p(n,n) = n!$
rep. not allowed, order mostlers.
12) Set combinations: X is a set, we take k edts of X to form a subject formb.
I find $k=1, k=1, k=1$.
13) Set combinations is X is a set, we take k edts of X to form a subject formb.
I formb. $= ((n, k)) = \binom{N}{k} = \frac{n!}{k!(n+k)!}$

Next time: the pigeonhole and division principles