Key Defo $\binom{w_{\text {a }}$ Covetere group }{$s_{1}, \ldots s_{n}$ the simple refl. }

- $\left(1, \ldots i_{m}\right) \quad 1 \leq i_{n}<n$ a word
- it is a reduced word for $\omega \in \omega$ if
$\omega=s_{1,} \ldots s_{\mathrm{m}}$
and the expression is as short as possible
- m is the length of ω

Def

- A s.s.g.t is called strict if the toms are strictly increasing
- if $T=1, \ldots \ldots \mathrm{~m}, c$ wand $(T)=\left(i_{1}, \ldots . i_{m}\right)$
- if $T_{1} \ldots T_{r}$ are the rems of T, then $w a r d(T)=\operatorname{con}\left(T_{T}\right) \ldots$ word $\left(T_{1}\right)$

The Alyoittins asome s_{k} is

- to insert K into an ascent bor
- $K>$ is
\square
i..... is $\operatorname{wond}(T)$
\square
- Kris \leftarrow Note Kan ascent $\Rightarrow K \leqslant i$ s
- let u be the smallest or furthest left ellice such that $K<i n$

$$
\text { - } k^{\prime}=i u
$$

The Algoitth Cont

- turo cases
- $u=1$ or $u>1$ and $i_{u-1}<k$

- uol and $i_{n-1}=k$

Wotice

K
the nom dorsen't charese. in $=k^{\prime}=k+1$

The Algoitts Cont

- the algoittr contimes by inoertigy K^{\prime} into the nent row
Ex

$$
\begin{array}{ll}
\frac{1}{3} & 2
\end{array} 1=\begin{array}{ll}
1 & 2 \\
\hline 2 & \\
\hline 3 &
\end{array}
$$

Ex

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline 1 & 2 \\
\hline 3 & 2 \\
\hline 2 & \\
\hline 3 & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [3 }<2 \\
& \text { 勺 } \quad x^{\prime}=2 \\
& \frac{4}{\frac{2}{3} T^{2}} k^{\prime \prime}=3 \\
& \theta \leftarrow 3=3 T_{3}
\end{aligned}
$$

$$
\begin{array}{l|l|}
2 & 4 \\
\hline 1
\end{array}
$$

$\frac{\text { Tema } 7.16}{\text { Af } T \text { is a reduced word and }}$ K is an aseent,

$$
\omega(T \leftarrow \omega K)=\omega(T) s_{\kappa}
$$

pl (shectoh)
Reluces to T a now

3 arser

- K is appenul
- (7.4)
- (7.5)

Bua'mondtl
$=\operatorname{moch}(T) s_{k}$

Elleman - Greene
$i=\left(i, \ldots i_{m}\right)$ a reduced word for w

- $P(i)=\varnothing \leftarrow \operatorname{Li}_{i} \leftarrow \ldots \ldots \operatorname{im}_{m}$
- Q (i) the recording tableau

Ex

$$
\begin{aligned}
& \cdot i=(2,3,2,1,2) \\
& \cdot P(!)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 2 & 3 \\
\hline 3 &
\end{array}
\end{aligned}
$$

$$
\text { - } Q(i)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 5 \\
\hline 4 & \\
\hline
\end{array}
$$

$T \mathrm{~m}$

- ω a permutation.
- the map

$$
i \longmapsto(P(:), Q(i))
$$

is a bijection ketwees reduced mols for os cul pairs of tablem of the sen n shape even that
P is reduced and S.s., Q is stanley and $\omega=\omega(\mathbb{D})$.

Exercise 7.3. For the six permutations in S_{3}, compute the insertion tableau P ad the recording tableau Q. Which permutations have the same P-tableau (resp. (t-tableau)?

Chapter 8: The Phatic Monsid
April 3,2020
Notation: \mathbb{B} : standard $G L(n)$ crystal
B_{λ} : crystal if tableaux (embedded with Raw Reading)
Goal: Understand the corrected components of $B^{\otimes K}$
Things to "recall": Normal crystals: "type free" idea of a Stembridge crystal

- Isomorphisms of connected normal crystals are unique.
- B_{λ} are stembridye - get canonical reps of isomorphism classes with highest weight λ.
- All components of $\mathbb{B}^{\otimes k}$ are isomorphic to B_{λ} for some x.

Plan: For a connected component C of $\mathbb{B}^{0 k}$, find λ so that $C \cong B_{\lambda}$ and give this isomorphism

Main Result Lit $x=x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k} \in \mathbb{B}^{\otimes k}$
Define $P(x)$ (SSYT) and $Q(x)(S Y T)$ by

$$
(P(x), Q(x)) \stackrel{R S k}{=} \phi \leftarrow x_{1} \leftarrow x_{2} \leftarrow \cdots \leftarrow x_{k}
$$

Then: $\lambda=\delta h(P(x))$ determines isomorphism type $B_{X_{x}}$
amines isomorphism type ${ }^{~} \lambda_{x}$.
platic \rightarrow • $P(x)$ determines the image of x under the isomorphism
doss,$Q(x)$ determines (reading word)
Coplartic doss $\longrightarrow Q(x)$ determines the connected component

Describing the Isomorphism
Define plactic equivalence on elements of a connected normal crystal by

\[

\]

Define Knuth equivaluce on words by elementary operations on consecutive sequences of length 3 by

$$
\begin{aligned}
& \begin{array}{l}
b a c \equiv_{k} b c a \\
a c b \equiv_{k} c a b
\end{array} \text { if } a \leq b<c \\
& 123 \\
& 132 \longleftrightarrow 312 \\
& 213
\end{aligned}
$$

$$
23!
$$

Important Results
Prop: In type A, the highest weight vectors in $\mathbb{B}^{\otimes k}$ are
Yamanouchi words:

$$
\longrightarrow \text { in all final segments. the \# of i's } \geq \text { the \# of }(i+1) \text { 's }
$$

Thu: In type A, Knuth equivalence implies plactic equivalence.

Things we can try:

- Compute the knuth map for $B_{(2,1)} \approx B_{(2,1)}^{\prime}$
from figure 3,3
- Show the same for other $\mathbb{B}^{\otimes K}$
- Exercise 8.2 -postpone

"If you have a tie, the right ore $321 \leftrightarrow 132$ avoiding should be read as bigger" permutations

Next time: 4 -fold tensor product crystal

- Other examples 8 - column reading + row reading
- If time allows, $8.3,8.4$
$\frac{\text { should }}{1}$ be Knuth equivale D
- Other apps of Knuth equiv?

