Notes for Tues. Jan 28
I. Quick Recap

- A root system $\overline{\text { 玉 }}$ is a collection of vectors in \mathbb{R}^{n} that play nicely with associated reflections.
- From the definition of the reflection map, we get carrots, α^{v}.
- From the root system, we can build a lattice on span $\$$ and call the elements in it weights.
- We car define fundamental weights that "pick out" the roots:

II Discussion on Kashiwara crystals
Definition: Let Φ be a root system indexed by I, and let Λ be the weight lattice.

O\& usually
A crystal of type $\bar{\Phi}$ is a nonempty set B together with maps
$e_{i}, f_{i}: \mathscr{B} \longrightarrow B \perp\{0\} \leftarrow$ crystal operators
$(i \in I) \quad \varepsilon_{i} \varphi_{i}: B \rightarrow \mathbb{Z} \cup\{-\infty\} \leftarrow$ string Lengths
wt: $\rightarrow \Lambda \quad \leftarrow$ weight map
that satisfy the following.

- For $x, y \in \beta, \quad e_{i}(x)=y \Leftrightarrow f_{i}(y)=x$
extra pieces: wt $(y)=\omega t(x)+\alpha_{i}, \varepsilon_{i}(y)=\varepsilon_{i}(x)-1, \quad \varphi_{i}(y)=\varphi_{i}(x)+1$
- $\left.\left.\varphi_{i}(x)=\langle\omega t| x\right), \alpha_{i}^{v}\right\rangle+\varepsilon_{i}(x)$
extra pieces: $\varphi_{i}(x)=-\infty \Rightarrow \varepsilon_{i}(x)=-\infty$ and we require $e_{i}(x)=f_{i}(x)=0$

If B is a crystal, we associate a directed graph with labeled edges: vertices: elements of B
edges: $x \xrightarrow{i} y$ if $f_{i}(x)=y<\begin{aligned} & \text { This description makes } \\ & \text { me think of } f^{2} \text { and } e \\ & \text { move }\end{aligned}$ as operators that move catch
"with" or "against" the dire sher of the graph but maids thor's balk wards

III Questions/Discussion
QO Open floor

Q1 There are a bunch of examples in the text. Are there any in particular we should discus?

$$
E \times 2.19
$$

Q2 There are a lot of descriptors for crystals. What intuition can we gather for them?

Q3. Tensor products seem to matter in Ch 3. Do any particular exercises look better ar worse for gaining familiarity?
Proof of 2.29 - HW for Friday

My answer to Q_{1} :

- Either today or Friday, do the following
\$. Compute the crystal operators in Ex 2.19 (type A)
- Discuss Ex 2.25 (row crystals) $+E \times 2.26$ (column crystals) at length as a preview for ch 3 .
- What the heck makes a crystal "standard"?

My answer to Q3:
2.1 - boring but important?
2.2 - $50 / 5$ 万 ${ }^{2}$ on if ill be good
2.4 and or (2.8)
2.10 (unrelated to tensors but the first half seems interesting)

