Last time: more analysis of A.W. decomp $CG \cong M_{n_1}(C) \times \cdots \times M_{n_r}(C)$ for G a finite gp.

In particular, $r=\pm 1$ imple CG-modules/ijo = ± 1 (onj. classes in G.

. HW discussion

Today: gp characters (assocrated to gp reps.)

Goal: to understand 917 reps/modules via numerical data.

Group characters Let G be a gp.

11). Reps of agp vs. reps of a gp algebra

Recall that (1) a rep. of a G 13 a vector space V equipped with a gp from $\rho: G \to GL(V)$.

- (2) a rep. of kG IJ, of course, a rec. space V equipped W an algebra hom $P: kG \to End_R(V)$.
- (3) The data of a G-rep and a kG-rep are equivalent. (1) \rightarrow (2): extend linearly, (2) \rightarrow (1): restrict

Today we'll use the language of gp reps.

12). Linear algebra

Let G be a finite gp and let p: G-> GL(V) be a rep of G. the natural mod. | running example: $G = S_3$, k = C, $kG = CS_3$, $V = C < e_1, e_7, e_3 > = C^3$ the rep $P: G \rightarrow GL(C^3)$ $P(g)(e_i) = e_{g(i)}$. - For each g = G, p(G) is a linear map in GL(V), so we can represent it as a nation for every fixed bases of V.

- With respect to different bases of V, the matrix of p(g)- But the matrices of plg) wirit any two bases of V are always similar: indeed, recau that $[p(g)]_{c} = P[p(g)]_{B}P = P[p(g)]_{B}P^{-1}$ In particular, they have the same trace indeed, this is the trace of the linear map P(g) in linear algebra. The sum of the diag. entries.

Def. (character of a rep.) Let G be a gp and Va G-module. Let P: G-> GL(1) be the corresponding rep. We define the character afterded by of V to be the function $X_V: G \to k$ where $\chi_1(g) = \text{trace of plg})$ for all $g \in G$. e.g. $\chi_1((12)) = 1$. - Note that the actions of conj. elts of G have the same trace. if g = xhx' for g,h.xt G, then tr(p(g)) = tr(p(h)), i.e. $\chi_v(g) = \chi_v(h)$, Since $\operatorname{tr}\left(\rho(g)\right) = \operatorname{tr}\left(\rho(x)\rho(h)(\rho(x))^{-1}\right) = \operatorname{tr}\left(\rho(h)\right) \xrightarrow{\sim} E.x.$ X,((23)) Thus, for every 6-rep V, XV is a class function in X1((13)) the sense that it is constant on every conj. class of G.

Def: We denote the set of all class functions on G by C(G).

ver. space

Some computations: $\langle \chi_{V}(e) \rangle = \operatorname{tr} \left(\left[f(e) \right]_{B} \right) = \operatorname{tr} \left(\left[\operatorname{rd}_{V} \right]_{B} \right) = \operatorname{tr} \left($

=) $\chi_{trN}(g) = 1 \forall g \in G.$

- for the regular nodule V = kG, G(V & G), $g \cdot h = gh = \begin{cases} h \cdot f \cdot g = e \\ \hline fh \cdot f \cdot g \neq e \end{cases}$ So $\left[\rho(9)\right]_{fh:h\in G} = \begin{cases} I_{IGI} & \text{if } g=e \\ a \text{ matrix of all zero } f \cdot g\neq e \end{cases} \Rightarrow \chi/g) = \begin{cases} I_{GI} & \text{if } g=e \\ o & \text{if } g\neq e \end{cases}$ diag. entries

- A word on class further, on G: from now on we assume that G has exactly r any classes C_1, C_2, \cdots, C_r . Let $S_i: G \rightarrow C$ be defined by $S_i(g) = \begin{cases} 1 & \text{if } g \notin C_i \\ 0 & \text{if } g \notin C_i \end{cases}$ Then clearly (Si: 15isr) forms a bass of CCG). eg. a class function sending Cito 1, 13). the character table of G.

Setup: G a finite 9p. $CG = M_{h_1}(C) \times \cdots \times M_{h_r}(C)$ U

(1, 3). e, , ez, --, er: ei is the id, in Mn:(r). L_1, L_2, \dots, L_r the simple G-mon, up to K_1 is K_2 . we'll osume that Li is the trivial module. $C_1 = \{e\}$. C1, C2, - --, Cr are the conj. classes of G.

Def: The character table of G is the rrr natrix where the (\bar{i},\bar{j}) entry \bar{i} $X_{Li}(g_{j'})$ where $g_{j'}$ \bar{i} only extrin $C_{j'}$.

Thus, each now encode the character of a simple Gr-module, and each column tells the behavior of a conj. ((av in the diff simple).

<u>e 3.</u>	53	g=e	g2= (12)	93 = (123)	
	& triv	[((_
	k sign	l	-1	١	
C -	< θ, -l, , l _z -l ₃ >	2	Ĵ	next time: prop.	E.X. of Char. tables.