Math 4140. Lecture 35.

04,14.2021.

The only if direction. We'll prove that if leG is si then char(k) [[G] by considering the complete reducibility of the regular module kG. Key object: the eff $w := \sum_{g \in G} g \in kG$ $g \in G \to (fin:te sum, melces serve)$ since (G) < oo. Note: $Hh \in G$, we have $h \cdot W = \sum_{g \in G} hg = \sum x = w$ since the mep $g \in G \to K = w$ since the mep since the mep $g \in G \to K = w$ since the me Pf: Assume kG is s.s, then kG is c.r. so the submodule U has a Complement C, i.e., a submodule C of kG , r. kG = UGC as modules, In particular, $1_{kG} = Nw + C$ for some NEK and CGC.

Note dat
$$\lambda \neq 0$$
: otherwise $1 = 0 + c = c \in C$, so $g = g \cdot 1 \in C = 3 \mid eq = C$.
But then $W = W \cdot 1 = W(\lambda w + c) = \lambda w^2 + W \cdot c = \lambda \mid q \mid v + W \cdot c$
so $Wc = W - \lambda \mid q \mid w = (l - \lambda \mid q) \cdot W \in U \cap c = 0$.
It follows that $\lambda \mid q \mid \pm 0$, so $|q \mid \pm 0$, so char(k) $\neq |q|$.
Rink: It might be more included to prove the contrepositive:
" $\mid kq \ s \cdot s \Rightarrow char(k) \neq |q|$ " \rightarrow if chark $\mid q \mid q$, then $\mid kq$ is not sos.
by showing that if $Char(k) \mid |q|$ is then the submodule $U \leq kq$ has no
complement, so kq is not c_{K} and hence not sos.

The if direction: We will show that kG_{ii} ss. if char(k) f[G]by proving that kG_{ii} completely reducible. Preparation: Recall from the most term that if $j: N \rightarrow M$ and $\pi: M \rightarrow N'$

are A-module hon, for a k-algebra
$$A$$
 st. $\mathcal{R} \circ j: \mathbb{N} \to \mathbb{M} \to \mathbb{N}'$ is an i.o.,
then $\mathbb{M} = \operatorname{in} j \in \ker \pi$.

F: Assume
$$\operatorname{Chev}(\mathbb{K}) \neq |G|$$
, so $|G| \neq 0$ in \mathbb{K} . Let $W \leq \mathbb{k}G$ be a
Submodule of $\mathbb{k}G$. We'll prove that W has a complement module C with $\mathbb{k}G = W \oplus C$.
It would follow that $\mathbb{k}G$ is c.r. and hence S.S.
We'll obtain C by consider the sequence $W \xrightarrow{j} \mathbb{k}G \xrightarrow{T} W$
have $M = \mathbb{k}G$. It is the natural inclusion $(W \mapsto W \oplus W)$ and π is a carefully selected how
st. $\pi_{oj} = \operatorname{Id}_W$ (which is certainly on iso.)
We'll take $C := \operatorname{perfl}$. The recalled lemma then implies that
 $\mathbb{k}G = \operatorname{im}_j^2 \oplus \operatorname{ker} \pi = W \oplus C$.
Thus, the main take is to construct the hom π s.t. $\pi_{oj} = \operatorname{Id}_W$.

It, Vit the "averaging trick"; First take an arbitrary Vec. space complement V
of W in kGT, Thus, kG=WeV.
Let
$$p: kG = WeV \rightarrow W$$
 be the projection from kG onto W; it's containely clucon
if"
and define the map $T = kG \rightarrow W$, $m \mapsto \frac{1}{|G|} \sum_{g \in G} g\left(p \cdot (g^{-1} \cdot m)\right)^{mop}$
We dain that $T = is a ka-module from and $T = Idw$.
 is''
We dain that $T = is a ka-module from and $T = Idw$.
 is''
 $is' = is' = is' = m = m$.
 $is g \cdot p(g^{-1}(m)) = g \cdot g^{-1} \cdot m = m$.$$