Math 4140. Leeture 32.

04.07.2021.

reduced the proof of the A.W. thm to Last time: (1) $A \cong \overline{\operatorname{End}}_{A}(A)^{\operatorname{op}}$ for an algebra A.

a) $A = \bigoplus_{i=1}^{N} \bigoplus_{j=1}^{N} S_{ij}^{(i)}$ $S_{ij}^{(i)} \subseteq S_{ij}^{(i')} \subseteq$

=) $\operatorname{End}_{A}(A) = \operatorname{End}_{A}(\mathfrak{S}^{(i)}) \stackrel{\sim}{=} \operatorname{TI} \operatorname{End}_{A}(\mathfrak{S}^{(i)}) \stackrel{\sim}{=} \operatorname{TI} \operatorname{End}_{A}(\mathfrak{S}^{(i)})$ • prove (1); start the proof of (2). $\operatorname{Di} \stackrel{\sim}{=} \operatorname{End}/S^{(i)}$

 $D_i \subseteq End(S_i^{(i)})$

1. A = EndA (A) of

Prop. (Lemma 5.4.) Let A be a le-algebra. Then there is an alg. 130 Y: A -> End, (A) P, a -> (a: A-1A, the end, with

ralwaga YafA)

Pf: The map 4 makes sense (each orput 4/a) = ro is indeed an A-mod hom) . fix aga Then r_{α} is easily seen to be linear. If $b \in A$, $x \in A$, $r_{\alpha}(b \cdot x) = (b \cdot x)\alpha = b \times \alpha = b(x\alpha) = b \cdot r_{\alpha}(x)$. brearity of 4: we need to show that 4 (a+b) = 4(a) + 4(b) and Y(Na) = N+la), Te, Yato = Ya+Yo and Xa = NYa, Ya.b.A, NEK. $\forall a' \in A,$ $\forall a' \in A$, $\forall a'$, so (1) and $r_{\lambda\alpha}(\alpha') = \alpha'(\lambda\alpha) = \lambda \alpha'\alpha = \lambda(r_{\alpha}(\alpha')) = (\lambda r_{\alpha}(\alpha'))$ (2) hold. injectivity of ψ : Suppose Y(a) = 0, ie, Ya = 0. Then Ya(a') = aa' = 0 Ha' 64.

In particular, for a'=| we have $a=a\cdot|=0$, so a=0, therefore p' is inj.

Surjeunvily of ψ : take $\psi \in End_A(A)^{\circ p} = End_A(A)$, so that ψ is an A-module hom. let $a = \varphi(1)$. Then $\forall a' \in A$, $\varphi(a') = \varphi(a'.1) \stackrel{*}{=} a' \cdot \varphi(1) = a' \cdot a = a'a = r_a(a')$ so $\varphi = r_a = \varphi(a)$, therefore $\varphi(a) = r_a(a')$ \forall is unital: we need $\psi(1) = id_A$, ie., $r_1 = id_A$, ie., $r_1(a) \stackrel{\bullet}{=} a' t a' \epsilon_A$. But $Y_{\ell}(a') = a' \cdot | = a'$. so \forall does hold for an $a' \in A$. ψ respects must: We need ψ (ab) = ψ (c) ψ (b) = ψ (b) ψ (c) = ψ (b) ψ (c) = ψ (b) ψ (c) = ψ (d), ψ (ab) = ψ (ab) = ψ (ab) = ψ (b) ψ (b) = ψ (b) ψ (c) = ψ (b) ψ (b) = ψ (b) ψ (c) = ψ (b) ψ (b) = ψ (b) ψ (c) = ψ (b) ψ (b) = ψ (b) ψ (c) = ψ (c) ψ (d) ψ ie, that Yab = to ora YabeA. Now, $\forall a' \in A$, $r_{bo}r_{a}(a') = r_{b}(a'a) = a'ab = a'(ab) = r_{ab}(a')$,

so Tab=rbora, as derived. It now follows that it is on alg. iso. a

2. from End_A(A) of to matrice (End_A(A)^{op} = End_A(
$$\Theta$$
 $S_{ij}^{(i)}$) of = (Π bad(E $S_{ij}^{(i)}$)) of = (Π bad(E $S_{ij}^{(i)}$)) of Step 1. Inatrices with homomorphisms as entries. = (Π $M_{ni}(D_i)$) of Prop. (Lemma 5.5) Let A be a K-algebra. Let U_{ii} -. U_{ij} be A-modules. The set

$$\Lambda := \left\{ \begin{bmatrix} P_{ij} \\ I \end{bmatrix} : P_{ij} \in Hom_{A}(U_{ij}, U_{ij}) \right\}$$
entry in Row i,

$$I_{ij} = I_{ij} \in Hom_{A}(U_{ij}, U_{ij})$$

$$I_{ij} \in Hom_$$

Pf: (sketch) 1 is a vector space: nontine wheek.

A D on algebra: We already argued that Λ D closed under Multiplication. The identity elt of Λ T, the matrix $I = \begin{bmatrix} idu_1 & 0 \\ 0 & -idu_1 \end{bmatrix}.$

All axions for algebras are routine to cheek LEX. cheek the id. prop. for I)

Step 2. End
$$(\mathfrak{G} \mathcal{U}_{j}) \cong \Lambda$$

Prop: (Learns 5.6) Let A be a E -algebra and let $(\mathcal{U}_{1}, \dots, \mathcal{U}_{r})$ be A -modules. Then the natural degelera $\Lambda \supseteq iso$, as an edg, to Enda $(\mathfrak{G} \mathcal{U}_{j})$.

Pf: (sketch) Construction of the iso : Write $V = \mathfrak{G} \mathcal{U}_{j}$.

We need the natural inclusion hore. $K_{i}: \mathcal{U}_{i} \to V$ and projection how $T_{i}: V \to \mathcal{U}_{i}$ for $|S| \subseteq r$. Note that (i) $T_{i}: \circ K_{i} = id_{\mathcal{U}_{i}}$ $V: and (ii) \subseteq K_{i} \circ T_{i} = id_{\mathcal{V}_{i}}$ We'll show that the map

$$\Phi: Gd_{A}(V) = Gd_{A}\left(\mathfrak{G} \mathcal{U}_{j}\right) \longrightarrow \Lambda, \text{ for } i = id_{\mathcal{V}_{i}}$$

Where $V: G: \mathcal{U}_{j} \to \mathcal{U}_{i}$ is given by $V: J: T_{i}: \circ V \circ K_{j}$ bij, $T: an Tio of algebras$.