Last time: Def. & Properties of Jaubson radicals. intersection of all maximal left ideals

Thm. (Thm 4.23.) Let A be a k-alg. of finite length. Let I be its Jawbson radical.

(a). I equals to unom it finitely many mar. left ideals.

(a). Jequary.

(b). We have $J = \bigcap_{S \text{ simple}} Ann_A(S)$.

(c). J is a two-sided ideal.

(d). I is nilpotent, and J''=0 where n is the length of A.

J is the lungest nilp. (d') I contain every nilpotent left ideal of A. left ideal.

Pf of d) and (d'): (we'll restate and prove 10) - (h) later. (d). J is nilpotent. (Strategy: hot the comp. factors of A with J.) Take a composition series $0 = V_1 \subset V_1 \subset V_2 - C V_n = A$ of A as an A-module. Then $V_i = 0$ smple for all $|\mathcal{E}| \in \mathbb{N}$, $|\mathcal{E}| \in \mathbb{N}$, $|\mathcal{E}| \in \mathbb{N}$, $|\mathcal{E}| \in \mathbb{N}$. It follows that $|\mathcal{E}| = 0$, $|\mathcal{E}| = 0$, (d'). Lenma: $\forall \chi \in A$, we have $\chi \in J \iff |-r \times has a| \text{ left inverse for every } r \in A$. $\text{Pf}: "\Rightarrow ": Let r \in A$. We prove that $A(1-r \times) = A \ni 1$. If not, then $A(1-r \times) = A \ni 1$. proper ideal of A, hence by Zom's Lemma 1-rx is contained in a maximal rdeal M. Thus, x & J C M, so Yx & M, so /= (l-rx) + rx & M. But then A & M, a Contradiction.

"E" We prove the contraposition: $f \times dJ$, then \exists max. rotal $M \cdot s.t. \times fM$, so M + Ax = A. In particular, 1 = y + rx for some $y \in M$ and $r \in A$. But then 1-rx=y has no left invene: if it did, then IZ sit. Zy=1 EM. which again would imply A = M, a contradiction.

E.X. Use the lemma and the formula $\left| - (rx)^{m} = (1 + rx + (rx)^{2} + \cdots + (rx)^{m-1}) (1 - rx) \right|$ to prove (d').

the theorem, continued: J i smallest two-sided ideal K st. A/K is ss. 1.2 2 is 5.5 (f) If I = A B a two-sided ideal s.t. A/I is s.s. then J & I. — I meannes s.s. of A. (9) A is s.s => J=0 (h) An A-module V is s.s. \iff J.V=0. - J meanner s.s. of A-module. Pf: 19. We will show that A/J is a s.s. A-module. Since Jamshilater A/J, it would follow from Thr 4.1]. That A/J is also a (leczs. use A=A, Z=J, B=A/J, s.s. A/J-module. Thus by def, A/J is s.s. V=A/J)

To show that A/J Ba s.s. A-module, we show that there is an iso E: AJ → A/M. & A/M. &... & A/Mr of A-modules where M., -, Mr are max left ideals of A st. a+J (a+M, a+M2, ---, a+Mr) Since A/m: 3 simple $\forall | \leq i \leq r$, it follows that A/J D S.S.A $J = \bigcap_{i=1}^{n} M_{r}$ an A-module (a) an A-module) and. AMj & Mi. Pf that \$\overline{P}\$ gives us an Jo. as claimed: (i). \$\frac{7}{2}\$ is well-defined: at \$J=b+\$] => a-b \(-J\)EM; => a+M; =>+Mi \(\frac{7}{2}\)ab\(\frac{1}{2}\)ab\(\frac{1}{2}\) (ii). \$\overline{T}\$ indeed an A-module hom: the action is just mult, on the coset reps on both sides. \(\overline{E}\times. \overline{\pi}(r. \overline{a}+J))=r.\overline{\pi}(r.\overline{q}+J) [iri), \$ is inj = atJeker\$ => atMi =06 A/m; #i => a EMi Vi => a EMi Vi => a EMi Vi (iv). I i) surj: It suffices to show that (0,0,0,0,1) at J=0. B/m & Vi. Postponed.

(f) · Suppose
$$A/I$$
 is s.s., then we have $A/I = S_1 \oplus \cdots \oplus S_r$

a) A/I -modules where $S_{1,-}$ -, S_r are simple A/I -modules.

By the proof of Constany 4.12 , each S_i is also a simple A -module, so $J.S_i = 0$ $\forall i$. But then $J.(A/I) = J.(S_1 \oplus \cdots \oplus S_r) = 0$. i.e., $J = JA \subset I$. If $J = JA \subset I$. If $J = JA \subset I$ is s.s. then $J = A/J$ is s.s. so $J = 0$ by $J = 0$.

If $J = 0$, then $J = A/J$ is s.s. by $J = 0$.

(f). "

V is a ss. A-module \Rightarrow $V = \bigoplus_{i=1}^{r} S_i$ Si a simple A module $\forall i$. \Rightarrow $J \cdot S_i = 0 \forall i$, so $J \cdot V = J \cdot (\bigoplus S_i) = 0$

"=" J.V=0 => V is an A/J-module

=> V D a S.S. A/J module since A/J 17 S.S

Thm 4.17. V is a s.s. A-nodule.

. Pf that € fnm (e) i) surj.

· Examples / Application; of Jacobson radicals

kt time