Math 4140. Lecture 23. Middem arrections, due 11:59 pm Mar. 24th.
Last time: Consequences of Schur's Lenna

$$A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$$

 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = a \in Z(A) \implies a = \lambda | d \lor for some \lambda \in k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A \mid d \to k.$
 $A (O \lor fd. = A$

Today: Overview of Ch 4: Semisimple modules and semisimple algebras.
(16)
Let A be a k-algebra.
Def 1: (semisimple modules) A semisimple A-module is a numzero A-module V
which equals the direct sum of simple submodules.
$$(V = \bigoplus S:)$$

iei
(1) Simples are semisimple. (2). $A = k \Rightarrow Ad$ A-modules are S.S: $V = \bigoplus S:$
(3). $A = Mn(k) \cap V = Mn(k) = \bigoplus C_i \Rightarrow V is a s.s. A-module. toka bais $\frac{1}{5}V_{1,V} = \cdots$. $\frac{1}{5}V_{1,V} = \frac{1}{5}V_{1,V} =$$

Remarkable Facts:

(1). Then 4.11: Let A be a k-algebra. Then A is semisimple if and
only if every nonzero module of A is semisimple! (The "if" is clear by definition,
but the "only if" also holds.)
(a). Every semisimple algebra is a direct product of matrix algebras (up to iso);
Then 5.9: Suppose A is s.s. Then there exist
$$r, n_1, \dots, n_r \in \mathbb{Z}_{\geq 1}$$
 and devision
k-algebra D., D., --, Pr s.t. $A = M_n(D_1) \times M_{n_2}(D_2) \times \dots \times M_{n_r}(D_r)$. (k)
(onversely, an algebra of the form B 3 semisimple.
If k is alg. closed, then A is s.s. $\Rightarrow A \cong M_{n_1}(k) \times M_{n_2}(k) \times \dots \times M_{n_r}(k)$,
for some $r, n_1, \dots, n_r \in \mathbb{Z}_{\geq 1}$.

Eq.
$$G = S_3$$
, $k = G$.
Maschke : GS_3 is so, id and for the sthere hand, by Moderne : $GS_3 = M_1(G) \times M_1(G) \times 7$
On the other hand, by Moderne : GS_3 has simplen $U = Span \{ 2V_1 + V_2 + V_3 \}$ id
 $W = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3, a+b+c \}$
 $V = \{ aV_1 + bV_2 + cV_3 + cV_3 + cV_3 + cV_3 + cV_3 + cV_3 +$