Math 440, Lecture 19. Midsterm covers: except 2.5.2, 3.4, 3.43, 03.63.202. Last time: Properties of module lengths. · Simple modules of quiver pach algebras ka. G acyclic. Thm1. $\exists 5.j$ $S: Q_0 \longrightarrow \{s.imple modules of kQ\}/iso$ $i \longmapsto S_i = Ae_i = Span \{e_i + Ae_i^{21}\}$ Ae_i^{21}

Proved: (1) S. is simple (2) S is sinj Need: (3) S is surj.

Via do

Lemma: Hi & Go. Ji = Aei! is unique maximal submodule of Aei.

Today. Proof of Thm 1. Quiver representations.

1. Pf of Thm 1: Let S be a simple A-module. We need to show that S :s isomorphiz to $S_i = \frac{Ae_i}{J_i}$ for some $i \in Q_0$. Pick $0 \neq S \in S$. Then $0 + S = 1.S = (\sum_{i \in G_0} \sum_{i \in G_0} (e_i \cdot S)$. So $e_i \cdot S \neq 0$ for some [∈ Qo. It then follows from Lemma 3.3. (Feb. 22) that eis generates S, ie, S = Aeis. Now consider the map $Y : Aei \rightarrow S = Aeis$ given by $x = aei \mapsto aeis$ Y(x) = xs $\forall x \in Aei. (so Y is right must. by s). Y is clearly linear$ and a (left) module hom: $Y(\alpha \cdot x) = y(\alpha x) = \alpha x = \alpha(x x) = \alpha Y(x)$. (Right mut give left make home for submodules of vegular modules.) Note that Y is clearly surj. so $S = |mY| \cong \frac{Ali}{kenY}$. that is,

S is a simple quotient of Ali. But Ji is the unique naximal submodule of Ali so S; is the unque simple quotient of Ali, therefore $S \subseteq S_i$. Is Eg. For the quiver 12 --- en you showed A=kQ = Tnck) in Ex. 1.18. You also showed that $T_n(k)$ has n simple modules up to iso. This is comparible with thin 1's prediction that ka has in simple modules. 2. Quiver representations

(Fact: If two algebras A, Az are isomorphic,
there is a bijection between their simple modules.)

We'll define representations of quivers.

The upshot will be: Representations of a guner Q are the same as

We don't need to assume that Q is acyclic. RQ.

Some observations (on modules of quiver path algebras ka GV) 0 = 0 00 · For any kQ module V, since the set $(\beta \alpha) \cdot V = \beta \cdot (\alpha \cdot V)$ Q = = { e; : [= Q =] U Q, generates kQ, to specify the kQ action it suffices to specify the action of the paths in Q^{2} . - Given any ka module V , for every vertex $i \in G_0$ the set eiV is a subspace and in fact a submodule of V on which $(*) \quad p.(e; V) = \begin{cases} e_i \cdot e_i \cdot v = e_i \cdot V & \text{if } p = e_i \end{cases} \quad \text{if } p = e_i \quad \text{Note: (Hw)}$ $V = \begin{cases} e_i \cdot e_i \cdot V = e_j e_i \cdot V = e_i \cdot V = e_j \end{cases} \quad \text{if } p = e_i \quad \text{for } i \neq i \end{cases} \quad \text{if } p = e_i \quad \text{Note: (Hw)} \quad \text{if } p = e_i \quad \text{if$ That is, Vadraits a collection of submodules { Vi : v & Qs } related by (*).

Def. A representation (over a ground field
$$k$$
) of a gaver $Q = (Q_3, Q_4)$ if the data $(V_i, Q_a)_{i \in Q_0, a \in Q_1}$ consisting of a vector space V_i for each $i \in Q_0$ and a linear map $Q_a : V_i \longrightarrow V_j$ for every arow of the form $a : i \longrightarrow j$ in a_i .

Eq. (1). One loop quiver. A rep of a_i is just a vector space $V = V_1$.

 $a_i : Q_a :$

Thm. (Reps of Q = Reps of kQ.) 12). (G-reps -> ka-modules) Given a rep (Vi, Pd): ca, de a, of a, we can Construct a unique RQ module V s.t. $V = \bigoplus V_i$ and the linear aution if $x = e_i$. If $x = e_i$ if $x = e_i$ if $x = e_i$. If $x = e_i$, $i \in Q_0$, $V_i \in V_i$, $x \cdot V_i = \begin{cases} e_i \cdot V_i = V_i \\ e_j \cdot V_i = 0 \end{cases}$ if $x = e_j$, $j \neq i$. $V_{d}(V_i) \in V_i'$ if $x = \alpha : i \rightarrow i'$. (2). (kQ-modules, \rightarrow Q-reps) Given a module V of kQ, we can define a rep (V_i, φ_d) is $Q_0, x \in Q_1$ of Q by setting $V_i = e_i V$ $\forall i \in Q_0$ and Pa: V: → Vj to be the map with Pa(e; Vi) = d.e. J= a. V HvieVi for each arrow =: i→j. (ej.d). Ve ej V= Uj. -> ends up in the right rpace.

(n) The constructions in (1) and (2) one inverse to each other.

In particular, regis of Q are in bijection with modules of kQ.

Pf. next +imo Pf; next time!