Math 4140. Lecture 17.

02.26.2021.

Case 2.
$$V_{n-1} \neq W_{n-1}$$
. In this case, let $D = V_{n-1} \cap W_{n-1}$. Note that:
(i). $V_{n-1} + W_{n-1} = V$: this holds $\begin{pmatrix} 0 = V_{0} \subset V_{1} \subset V_{0} \subset \cdots \subset V_{n-1} \subset W_{n-1} \subset W_{n-$

Truncating
$$(I) - (II)$$
, we get the following four comp series, two for V_{n-1}
and two for W_{m-1} : $0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_{n-1}$ (1)
 V_{n-1} $0 = W_0 \subset W_1 \subset W_2 \subset \cdots \subset W_{n-1} \subset V_1$ (2)
 V_{n-1} $0 = D_0 \subset D_1 \subset \cdots \subset D_t = D \subset V_{n-1}$ (3)
 $0 = D_0 \subset D_1 \subset \cdots \subset D_t = D \subset V_{n-1} - V''$ (4)
Applying the ind. hypo. on V_{n-1} , we get $N - [= t+1]$ (so $t = n-2$) and
(1) and (3) are equivalent. Since $t = n-2$ in (4), we have $m-1 = (n-2) + 1 = n-1$.
so $m = n$. Now, applying the inductivit hypo to (4) and (2). we see that (4) and
(2) be equivalent.

Now.

$$(1) -(13) \implies \text{in} (I) \cdot 0 = \forall_0 CV_1 - - CV_{n-1} CV_n = \vee, \text{ the comp factor are a}$$

$$\begin{array}{c} \text{permutation of } & \sqrt{\sqrt{n-1}}, & \frac{\sqrt{n}}{D}, & \frac{Dt}{Dt-1}, & ---, & \frac{Dt}{D}, & \frac{Dt}{D_0}, \\ (1) -(14) \implies \text{in} (II) \cdot 0 = W_1 CW_1 & --\cdot V_1 W_{m-1} CW_m = \vee, \text{ the comp factors are a} \\ & \frac{Permutation}{Permutation} \text{ of } & \sqrt{\sqrt{m-1}}, & \frac{W_{m-1}}{D}, & \frac{Dt}{Dt-1}, & --\cdot, & \frac{Dt}{D_0}, & \frac{Dt}{D_0}, \\ (1) & \sqrt{\sqrt{n-1}} \cong & \frac{W_{m-1}}{D} & \text{ and } & \frac{V_{m-1}}{D} \cong & \frac{V}{W_{m-1}} & \frac{W_m}{W_m}, & \frac{V_m}{V_m}, & \frac{V_m}{V_m},$$

Properties of module lengths. A: k-alg.
Record: (1) A module V of A is said to have finite length
if it has a comp serves.
(2) By the JH thun, if V has finite length then we may
define the length of U, written (U), to be the common
length of out its Lomp. serves.
Eq. We already saw that

$$L(V) = 0 \iff V = 0$$
; $L(V) = 1 \iff V$ is simple.
More generally, $L(V)$ may be viewed as a measure of how for away V is
from being simple.