Math 4140. Lecture 16. Midterm I: takehome, available 5pm, March 5 02.24.2021.

Last time: more on simple modules

- corp. serier: defs. examples, Statement of main results. (A: k-alg.)

a comp. series exists and is unique for any f.d. A-module up to permutation of comp. factors

- Proofs of the existence result. Preparatum for the pf of the uniqueness result.

1. Examples.

(a). Assuming the Jordan-Hölder Thm, we have that the length of a k-module ($\equiv k$ -vec. space) is just $\dim_{\mathbb{R}} V$.

Then the chair
$$0 = V_0 \subset V_1 \subset V_2 - \cdots \subset V_n = V$$
 is a comp series of V , the quotients are $V_1/V_{1-1} \cong C_1 \cong \mathbb{R}^n$, which is simple on an A mod.

(i) Let $W_1 = C_n \otimes C_{n-1} \otimes \cdots \otimes C_{n-i+1} \quad \forall 1 \leq i \leq n$.

Then the chair $0 = W_0 \subset W_1 \subset W_2 \subset \cdots \subset W_n = V$ is a comp series of V for the same yearon. This time with $W_1/W_{1-1} \cong C_{n-i+1} \cong \mathbb{R}^n$.

(i) and (i) give W_1 two distinct but equivalent comp series of V , each with $V_1 \otimes V_2 \otimes V_3 \otimes V_4 \otimes V_4 \otimes V_5 \otimes V_6 \otimes V_6 \otimes V_6 \otimes V_7 \otimes V_$

(b). $\underline{Mn(k)} \cap \underline{Mn(k)} = C_1 \in C_2 \oplus \cdots \oplus C_n$. [eg. 3.7.(4)/3.14.11) A = VTwo distinct composition series: $C_i = \left\{ \left[0 \middle|_{i=0}^{*} 0 \right] \right\} \stackrel{\sim}{=} \left[\left[\left[v \middle|_{i=0}^{*} \right] \right] \right\}$.

(c).
$$A = k \times k \text{ (a)} = A$$
, $S_1 = \{(x,0) : x \in K\} \in A$, $S_2 = \{(0,y) : y \in K\} \in A$.
(eq. 3.14.13))

$$Ex: (1). S, \text{ and } S_2 \text{ are submodules of } A. \text{ More over, they an simple.}$$
(2). $A/S_1 \cong S_2$, $A/S_2 \cong S_1$.

(3) S, \$ Sz.

It follows that $0=:V_0\subset V_1=S_1\subset V_2=V=A$ (after a permutation of comp factors.) $0=:W_0\subset W_1=S_2\subset W_2=V=A$ One both comp. series of A, with quotients $\left(\frac{V_1}{V_0}=S_1\right)$, $\frac{V_2}{V_1}=S_2$ and $\left(\frac{W_1}{W_0}=S_2\right)$, $\frac{W_2}{W_1}=S_1$). So the seq. of comp factors are not the same up to 130, but the series are not equivalent.

2. Proofs Let A be a k-algebra. We already saw that not every A-module has a comp series $(A=k \ (V, dmV=\infty))$. But finite-dimensional A-modules do always have comp. series: Prop: (Lemna 3.9) Every f.d. A-module V has a comp series.

Pf: Use industrian on $d := d_{in} kV$. Base case: d=0 or d=1. last leature V has a comp sense of length o or 1, resp. J. Inductive Step: Say d>1. If V is simple, then again we saw that V has a comp ferrer of length 1. So assume V is not simple, ie, V has at least one nonzero property submodule. Take a maximal nonzero proper submodule U of V. By induction, Since clin W = dm V = d, U must have a comp series 0 = : Uo CV, --- CV = U. (*) But then 0=40CU, -- CUc=uCV II a comp series of V: { Wuil sample since U \(\sigma \) max.

[I max.]

So the existence part is easy; uniqueness in harder: Thm. (Jordan-Hölder, Thm 3.11) Suppose on A-module V has two comp. sevies 0 = Vo CV1 c --- c Vn1 CVn = V $0=W_0\subset W_1\subset \cdots\subset W_{m-1}\subset W_m=V \qquad \qquad (I).$ Then they are equivalent, i.e., n=m and there is a permutation $\sigma\in S_n=S_m$ s.t. $V:/V_{i-1}\cong W\sigma(i)/W\sigma(i-1)$ $\forall \ 1\leq i\leq n$. Rule: The proof with mainly be an exercise in induction and module isos.

the second promophism therein for modules.

H = G . K \(\alpha\) G

Lu, W \(\alpha\) \(\lambda\) , U, W ≤ V

L+W/W = W/W N

Unw

Unw for gps:

HIELK

HAR

Lemma (inheritance, Prop 3.10.) If V has a comp series, then every submodule U ≤ V also has a comp series. Pf: Take a comp series 0 = Vo CV, c --- c Vn = V of V. Intersecting each term in the series of U yields a chain of subspaces 0 = VOAU C V, AU C --- C V, AU = VAU=U X) Removing duplicate term, if necessary, we may assume that oul containment in (*) are strict. We down that Vinu/Vinu = Vi/Vi-1, so &) is a Comp series.

(ii). Since Vi-1 Dut Vinu by assumption. V: NW/Vinnu # D Since Vi/Vi-1 is simple, (i) and (ii) imply that V: DU/Vinu= Vi/Vi-1. Next time: pf of the Jordan-Hölder Thm.

Pf of the claim that VinuVinnu = Vi/Vi-1:

(1) By the 2nd Iso Thm (wi wir), we have