Last time: From gp action, to modules/reps of gp algebras.

G G \times \longrightarrow A=kG $\bigvee = k \times .$ $(g,x) \mapsto g \cdot x$ $g \cdot e_x = e_{g,x}$

. Simple modules: nonzero modules w/ exactly two submodules
- basil examples: modules of dim. 1 are simple

Mrik) (kn is simple.

Sn Q [n],n>) >> kSn Q kaj: not simple

Today: nove on simple modules · Composition series.

1. More on simple modules.

Warm-up examples.

(1). A=k. An A-nodule i) just a k-vector space V,

and Vi) simple iff dim N = 1.

r) Let D be a division algebra (so every nonzero ett is invertible).

The regular module DCD is simple: Let UED be a submodule that's not zero. Need to show that U=D. Since $U\pm U$, there is a nonzero ext

 $u \neq 0$ in U. Now, u^{-1} exists in D since D is a division experse, u^{-1} : u = |e|U. But then $V d \in D$, d = d. $I \in U$, so U = D.

Lemma 3.3. ("Cyclicity test for simpleness") Let A be a k-alg and V a nonzero A-module. Then V is simple of and only if $\forall v \in V | \{0\}\}$ we have Av = V. Pf. (=). Let NEV/103. Recall that AU is a submodule of V. Thus, if V is simple, then Av=0 or Av=V. But $v=1.v \in Av$, so A = 0, therefore A J = V.

(E). Suppose Av=V VICV(503. Let UEV be a submodule that is not zero.

Take $u \in U$ russero. Then Au = V by supposition. But Au EU, so YEN, so U=V. It follows that V is simple.

Lemma 3.4. (simplicity of quitient modules) Let 4 be a K-alg, V an Amodule and U = 1 a proper submodule. Then V/U II simple If U 71 a maximal submodule of V (ie, if w is a submodule of V with U = W = V then W = U or W=V) Pf: This follows from the wrespondence than for modular.

The first of the f

С

2. Composition Series.

Definitions. Let A be a k-alg and let V be a A-nudule. · (Composition society. length) A composition series of Viz a finite chain of A-modules $1 \neq 0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$ st. $V_1 \neq V_{i-1}$ is simple $V_1 \leq i \leq n$. The length of such a series is N, the number of quotients. V_{i-1} is a max. submidule in V_i · (finite length) We say I has truite length if it admits a comp. series. . (terms. composition factors) In a comp. series of the form (x), we voil

The main results on composition series are: Let A be a 12-alg. 12). Existence. (Lemna 3.9.) Every f.d. A-module has a Composition serves (and therefore has finite length). (2) Uniqueners (Thm 3.11. Jurdan-Hölder Thm.) Suppose an A mod V has two Composition series. Then they are equivalent.

[length (V)] Det: If V has finite length, then we define the <u>length</u> of V to be the <u>length</u> of any comp series of V. If V is not of finite length, we say the length of V is infinite.

Before we prove the result, some examples:

pfs next time, (1) the zero module V=0. $0=V_0=V$ is the unique comp series of V, so length (0) = 0. (2) simple modules V $0 = V_0 \subset V_1 = V$ Is a comp series since eg. $N^{n(k)}$ k^n simple. $V_1/V_0 \equiv V_1$ O simple. So length (V) = 1. length $(k^n) = 1$ din $(k^n) = n$. (3) A=k. $V=an_1hf$. d.m. k-v.s. $\longrightarrow V$ has no comp. series. Note that V has no comp series: if it did, we'd have a finite dain $0 = V_0 \subset V_1 - \cdots \subset V_n = V$ with $d_i m V_i / V_{i-1} = | \forall i$. This would imply dim $V = n < \infty$ (Fact: $\dim V/u = \dim V - \dim U$.)