02. [0, 202]

Change to
$$HW3.(6)$$
: $Ex. 2.2$ $\longrightarrow Ex2.2$. (a) -(b).
Last time: Def of module homs \therefore induced modules, direct sums/products
Today. More on module homs / isos. Some modules of kEx] and its quotients
1. Properties of module homs R isos. Let R be a rug.
Recall (def): A map $f: M \rightarrow N$ of R-modules is a gp hom
that respect the R-actions, i.e., a map sit
(i) $f(m, + m_2) = g(m) + g(m_2)$ $\forall m, m_2 \in M$.

Remarks.

(i). "that recurring theme". If
$$R = A$$
 is a k-algebra, then an A-module hom
is automatically a linear map, that is, in ordelition to (i) if respects
scaling . $Q(c.m) = c \cdot Q(m)$ $\forall c \in k, m \in M$. Pf: EX. Use $k \rightarrow A$, $c \rightarrow c \cdot I_A$.
(i) To check a map $P: M \rightarrow N$ between two R -modules is a module hom,
it suffices to check that Q is a gp hom and respects the R-actions.
Feel free to quote results from gp theory.
 $Qre brock R$ -module homs.
 $The maps i = U \rightarrow M$, $u \mapsto u$; $Ti = M \rightarrow M'U$, $m \mapsto m \neq U$
 $are brock R$ -module homs.
 $The delts$ gp hom? $i \vee Ti \vee by$ go theory; respect orders? easy to check as wed.

Somophism Thms for modules

Thm.
$$(Thm. 2.24)$$
. Lot R be a ring, M.N be R-modules, and U.V EM be
Submodules of M.
(a) If $\varphi: M \rightarrow N \ \square$ an R-module hon. Then $|mq \in N \ is a submodule of N, ker \varphi$
 \square a submodule of M, and we have a vell-defined nodule \square
 $M/ker \varphi \longrightarrow |me \varphi$, $m + ker \varphi \mapsto \varphi(n)$.
(b) The sum U+U is an R-module, the intersection U(NV \square on R-module, U
and we have $U/U(N) \cong (U + V)/V$.
(c) Suppose $U \leq V$. Then V/U \square an R-submodule of M/U ,
 $U(V)$ $U(V) \cong M/V$ \square \square R -modules. Pf : HW.

Internal/external direct sums.

In 14w4, you are asked to show the last claim from Lecture 10. M: R-module. (Ui) : eI, each Ui a submod of M. External internal way there's a chance that M equals the Can create the ext. internal direct sum & Ui, : e. that dir. sum E. Ui (Ui); EI satisfy the conditions m Def 2.15. (b) Claim: If so, $\mathcal{E} \oplus \mathcal{U}_i \longrightarrow \mathcal{G}_i$, $(\mathcal{U}_i)_{i \in \mathbb{Z}} \longrightarrow \sum_{i \in \mathbb{Z}} \mathcal{U}_i$ gives an R-mod iso.