Math 4140. Lecture 10.

02.08.202

(b) More generally, if there is a ring from
$$p: A \rightarrow B$$

(for (1), $q = i: A \rightarrow B$, $i(c) = a$, $\forall a \in A$)
then any B -module M (on be made an A -module with the actim given by
 $a \cdot m = p[a] \cdot m$
 $a \cdot m = p[a] \cdot m$
 $a \cdot A = p[a] \cdot m$
(i) $a \cdot (m+n) = p(a) \cdot m + p(a) \cdot n = a \cdot m + a \cdot n$
(ii) $a \cdot (m+n) = p(a) \cdot m + p(a) \cdot n = a \cdot m + a \cdot n$
(iii) $1_{n} \cdot m = p(a) \cdot m = m$
(iv) $(a \cdot a') \cdot m = p(a + a') \cdot m = p(a) \cdot m + p(a) \cdot m = a \cdot m + a' \cdot m$
(iv) $(a \cdot a') \cdot m = p(a \cdot a') \cdot m = p(a) \cdot p(a') \cdot m = p(a) \cdot m + p(a') \cdot m = a \cdot m + a' \cdot m$
(iv) $(a \cdot a') \cdot m = p(a \cdot a') \cdot m = p(a) \cdot p(a') \cdot p(a') \cdot m = p(a) \cdot p(a') \cdot p(a')$

.

Def. (External direct sum (product; Def 2.17, P.38)
Let R be a ring and let (Mi)icI be a family of R-modulu for some index set I.
(a) The Cartesian product
$$\prod_{i \in I} M_i = \{ (M_i)_{i \in I} | M_i \in M_i \text{ for all } i \in I \}$$

is notionally an R-module with componentwise add. on R-action. $((m_i) + (m_i)) = (m_i \cdot m_i)_i$
 $r \cdot (m_i)_i = (r \cdot m_i)_i$; it is called the direct product of the family (Mi)i \in I.
b) The subset $\bigoplus_{i \in I} (m_i) \in I | m_i \in M_i \; \forall i, m_i \neq 0 \text{ for only finitely many } i \in I \}$
of $\prod_{i \in I} is a submodule of $\prod_{i \in I} i \in I$ and the direct sum of (Mi) i \in I.$

Def (internal direct sum; Def. 2.15.16). Pot)
Let R be a ring and let M be an R-module.
We say M is the direct sum of a family (Ui); eI of Rombodules, denoted

$$M = \bigoplus_{i \in \mathbb{Z}} U_i$$
, if the following holds:
(i). $M = \sum_{i \in \mathbb{Z}} U_i$, that is, every et me M is a finite sum of ells from
the submodules U_i .
(ii). For every $j \in \mathbb{Z}$ we have $U_j \cap \sum_{i \neq j} U_i = 0$
Eq. We say that for $k = A = \{\lambda Id_n | \lambda ek\} \subseteq B = Mn(k) \oplus k^n = : M (A \oplus M)$
 $U_i := Span(ki)$ is and (ii) by linear objector, so $M = \bigoplus_{i \neq j} U_i$.

Note: 11) Recall from gp theory that for a gp G and a family

$$\{G_i: i \in I\}$$
 of subgpt of G, G is isomorphic to the enternal direct
 $Sum \bigoplus_{i \in I} G_i$ iff $G = \bigoplus_{i \in I} G_i$ as an internal direct sum.
Via the map $E \times G_i \longrightarrow G$, $(g_i)_{i \in I} \longrightarrow \mathbb{Z} g_i$.
a) The same fact holds for R-modules: for an R-module M and a family
of submodulos $(U_i)_{i \in I}$. M is iso to the external direct sum $\widehat{\mathcal{O}} U_i$
iff $M = \bigoplus U_i$ as an internal direct sum $(iR_i, iff i)$ and (ii) hold)
 V_i the map. $E \times \cdots \otimes U_i$, $(U_i)_{i \in I} \longrightarrow \mathbb{Z} U_i$.
 $F \in W$.